Welcome, guest | Sign In | My Account | Store | Cart

Paints a picture in the abstract style.

Python, 373 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# PREAMBLE



# My original intention was to create some

# disruptive visual camoflage, inspired by the pattern on

# the bark of plane trees. The result was never quite what I intended

# and several fixes had to be incorperated to aproximate what I wanted.

# The end result is effective though and reminds me of a Jackson Pollock

# or a Monet painting.

# I think that the program does quite a good job of producing an aesteticalty

# pleasing picture, through a purely mathematical process,

# though some considerable tweeking on the part of the programmer

# was needed to achieve this.

# In this version, I am able to show a wide variety of colour schemes.

# Artists code their colours according to three dimensions, (hue, chorma and saturation)

# This might be a more apropriate approach than (red, green, blue).



# CODE



from Tkinter import *

from math import *

from random import*



# critical parameters, adjust to suit

W = 800        # canvas dimensions

H = 500        # golden ratio  

nLow    = 25   # recursive limiter

nCover  = 0.05  # Adjusts probability of a particular area being painted over per sweep

nMSpan  = 10.0  # Same as above, These two parameters depend upon the number of recursions

nCSpan  = 8.0  # Same for colour range

nSplatterSize = 0.25

# scale factor per recursion. i.e. not scale invariant

aScale  = [0.05, .1, .6, 0.9,0.9,0.3,0.1,0.1,0.1,0,0,0,0,0,0,0,0,0,0,0,0]

# colours 

aColour = [0.5,0.0,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]



# The two functions VibrantHousePaint and DrawDrip

# can be modified to suit 

def VibrantHousePaint(oM, nR):

    # colour scheme

    rg  = oM.rg

    rb  = oM.rb

    gb  = oM.gb

    cR = ColStr(int((ZeroToOne(oM.r + rg - rb - oM.rgb , nCSpan * nR)) * nMaxR) + nMinR) # red   

    cG = ColStr(int((ZeroToOne(oM.g - rg + gb - oM.rgb , nCSpan * nR)) * nMaxG) + nMinG) # green 

    cB = ColStr(int((ZeroToOne(oM.b + gb - rb - oM.rgb , nCSpan * nR)) * nMaxB) + nMinB) # blue              

    return '#' + cR + cG + cB                         



def DrawDrip(nX, nY, oM, nR, bScheme):

    colour = apply(bScheme, (oM, nR))

    nL = (nLow + 0.0) * nR / 3

    nX1 = dist(nX, nL * nSplatterSize)

    nY1 = dist(nY, nL * nSplatterSize)

    nL2 = dist(nL , nL)

    canvas.create_oval( nX1, nY1, nX1 + nL2, nY1 + nL2, fill = colour, width = 0)

    canvas.create_rectangle( nX1, nY1 , nX1 + nL2 / 2.0, nY1 + nL2 / 2.0, fill = colour, width = 0)

    canvas.update()





class splat:

    def __init__(self,z,r,g,b,rg,rb,gb,rgb):

        self.z   = z

        self.r   = r

        self.g   = g

        self.b   = b

        self.rg  = rg

        self.rb  = rb

        self.gb  = gb

        self.rgb = rgb



def ColStr( x):

    if x > 255:

        x = 0

    if x < 0:

        x = 255

    s = "%x" % x # converts x into a hexidecimal string

    if len( s) < 2:

        s = '0' + s

    return s



def Load(aGrid, nX, nY, n):

    # changes value if not set, or else it returns the value

    cKey = str( nX) + '_' + str( nY)

    if aGrid.has_key(cKey):

       return aGrid[cKey]

    aGrid[cKey] = n

    return n





def ZeroToOne(nM, nSpan):

    # maps the Real domain onto [0 , 1]

    return atan(nM * nSpan) / pi + 0.5 

    

def mid(n1, n2):

    return int((n1 + n2) / 2) 



def dist(nP, nScale):

    return nP + (random() - 0.5) * nScale



def odist(A, nS1, nS2):

    z = 0

    r = 0

    g = 0

    b = 0

    h = 0

    v = 0

    rg = 0

    rb = 0

    gb = 0

    rgb = 0

    for i in A:

        z += i.z

        r += i.r

        g += i.g

        b += i.b

        rg += i.rg

        rb += i.rb

        gb += i.gb

        rgb += i.rgb

    l = len(A)

    z = dist(z / l, nS1)

    r = dist(r / l, nS2)

    g = dist(g / l, nS2)

    b = dist(b / l, nS2)

    rg = dist(rg / l, nS2)

    rb = dist(rb / l, nS2)

    gb = dist(gb / l, nS2)

    rgb = dist(rgb / l, nS2)

    return splat(z, r, g, b, rg, rb, gb, rgb)



def FracDown(aGrid, nX1, nY1, nX2, nY2, oTL, oTR, oBL, oBR, nLim, nRecursive, bScheme):          

    # fractal lanscape grenerator

    dx  = nX2 - nX1

    dy  = nY2 - nY1

    nS  = aScale[nRecursive]

    nSC = aColour[nRecursive]

    oT  = odist([oTL, oTR], nS * nHorizFactor, nSC)

    oL  = odist([oTL, oBL], nS, nSC)

    oR  = odist([oTR, oBR], nS, nSC)

    oB  = odist([oBL, oBR], nS * nHorizFactor, nSC)

    oM  = odist([oTL, oTR, oBL, oBR], nS * nDiagFactor, nSC)

    nXm = mid(nX1, nX2)

    nYm = mid(nY1, nY2)

    oTL = Load(aGrid, nX1, nY2, oTL)

    oTR = Load(aGrid, nX2, nY2, oTR)

    oBL = Load(aGrid, nX1, nY1, oBL)

    oBR = Load(aGrid, nX1, nY1, oBR)



    if dx <= nLow and dy <= nLow: 

       if ZeroToOne(oM.z, nMSpan * sqrt(nRecursive)) > nLim:

           DrawDrip(nXm, nYm, oM, sqrt(nRecursive), bScheme)

       return

    t1  = (aGrid, nX1, nYm, nXm, nY2, oTL, oT,  oL,  oM,  nLim, nRecursive + 1, bScheme)          

    t2  = (aGrid, nXm, nYm, nX2, nY2, oT,  oTR, oM,  oR,  nLim, nRecursive + 1, bScheme)          

    t3  = (aGrid, nX1, nY1, nXm, nYm, oL,  oM,  oBL, oB,  nLim, nRecursive + 1, bScheme)          

    t4  = (aGrid, nXm, nY1, nX2, nYm, oM,  oR,  oB,  oBR, nLim, nRecursive + 1, bScheme)          

    aT  = [t1,t2,t3,t4]

    shuffle(aT)

    for i in aT:

        apply(FracDown, i)





def ColourRange():

    nMin = int(random() * 255)

    nMax = int(random() * 255)

    if nMin > nMax:

       nMin, nMax = nMax, nMin

    return nMin, nMax - nMin



def Frac(nLim, bScheme):

    aGrid = {}

    s1 = splat(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

    s2 = splat(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

    s3 = splat(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

    s4 = splat(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

    FracDown(aGrid, 0, 0, W - 1, H - 1, s1, s2, s3, s4,nLim, 1, bScheme)          



seed()

canvas = Canvas( width = W, height = H)

canvas.pack(side = TOP)

canvas.create_rectangle( 0, 0, W, H, fill = 'gray', width = 0)

nHorizFactor = (W + 0.0) / (H + 0.0)

nDiagFactor  = sqrt(H**2 + W**2) / (H + 0.0) 

nMinR, nMaxR = ColourRange()

nMinG, nMaxG = ColourRange()

nMinB, nMaxB = ColourRange()

Frac(nCover, VibrantHousePaint)

print 'done'    

Some research has been done into the fractal qualities of visual art. This program creates a semi random painting with similar fractal qualities. A large number of colour ranges can be generated for viewing.

Created by James Coliins on Thu, 23 Feb 2012 (MIT)
Python recipes (4591)
James Coliins's recipes (8)

Required Modules

  • (none specified)

Other Information and Tasks