Welcome, guest | Sign In | My Account | Store | Cart
```#On the name of ALLAH and may the blessing and peace of Allah
#be upon the Messenger of Allah Mohamed Salla Allahu Aliahi Wassalam.
#Date : 10/07/10
#version :2.6

"""
maclaurin_ln is a function to compute ln(x) using maclaurin series
and the interval of convergence is -1 < x < +1
ln(y) = ln(1+x/1-x)= 2(x + x^3/3 + x^5/5 + x^7/7 ...........)
"""

def maclaurin_ln(value, k):
"""
Compute maclaurin's series approximation for ln(value).
"""

first_value = 0.0

#attempt to Approximate ln(x) for a given value
try:
value_x = (value - 1)/float(value + 1)
for item in xrange(1,k,2):
next_value = value_x **item/item
first_value += next_value

return 2*(first_value)

#Raise TypeError if input is not a number
except TypeError:
print 'Please enter an integer or a float value'

if __name__ == "__main__":

maclaurin_ln_1 = maclaurin_ln(2,100)
print maclaurin_ln_1
maclaurin_ln_2 = maclaurin_ln(5,100)
print maclaurin_ln_2
maclaurin_ln_3 = maclaurin_ln(777,10000)
print maclaurin_ln_3
print
for arg in xrange(7,28,10):
print "ln(%s) = %s " %\
(arg, maclaurin_ln(arg,10000))
###########################################################################

#"C: python \Maclaurin_ln
#0.69314718056
#1.60943791243
#6.65544035037

#ln(7) = 1.94591014906
#ln(17) = 2.83321334406
#ln(27) = 3.295836866
```

#### Diff to Previous Revision

```--- revision 7 2010-07-15 11:15:37
+++ revision 8 2010-07-15 11:16:30
@@ -15,8 +15,7 @@
"""
Compute maclaurin's series approximation for ln(value).
"""
-
-
+
first_value = 0.0

#attempt to Approximate ln(x) for a given value
```