A straightforward red-black tree implementation based on the algorithms in the "Introduction to Algorithms" book by Cormen, Leiserson, Rivest, Stein. Unfortunately I have not needed delete functionality so this is not implemented yet.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | class rbnode(object):
"""
A node in a red black tree. See Cormen, Leiserson, Rivest, Stein 2nd edition pg 273.
"""
def __init__(self, key):
"Construct."
self._key = key
self._red = False
self._left = None
self._right = None
self._p = None
key = property(fget=lambda self: self._key, doc="The node's key")
red = property(fget=lambda self: self._red, doc="Is the node red?")
left = property(fget=lambda self: self._left, doc="The node's left child")
right = property(fget=lambda self: self._right, doc="The node's right child")
p = property(fget=lambda self: self._p, doc="The node's parent")
def __str__(self):
"String representation."
return str(self.key)
def __repr__(self):
"String representation."
return str(self.key)
class rbtree(object):
"""
A red black tree. See Cormen, Leiserson, Rivest, Stein 2nd edition pg 273.
"""
def __init__(self, create_node=rbnode):
"Construct."
self._nil = create_node(key=None)
"Our nil node, used for all leaves."
self._root = self.nil
"The root of the tree."
self._create_node = create_node
"A callable that creates a node."
root = property(fget=lambda self: self._root, doc="The tree's root node")
nil = property(fget=lambda self: self._nil, doc="The tree's nil node")
def search(self, key, x=None):
"""
Search the subtree rooted at x (or the root if not given) iteratively for the key.
@return: self.nil if it cannot find it.
"""
if None == x:
x = self.root
while x != self.nil and key != x.key:
if key < x.key:
x = x.left
else:
x = x.right
return x
def minimum(self, x=None):
"""
@return: The minimum value in the subtree rooted at x.
"""
if None == x:
x = self.root
while x.left != self.nil:
x = x.left
return x
def maximum(self, x=None):
"""
@return: The maximum value in the subtree rooted at x.
"""
if None == x:
x = self.root
while x.right != self.nil:
x = x.right
return x
def insert_key(self, key):
"Insert the key into the tree."
self.insert_node(self._create_node(key=key))
def insert_node(self, z):
"Insert node z into the tree."
y = self.nil
x = self.root
while x != self.nil:
y = x
if z.key < x.key:
x = x.left
else:
x = x.right
z._p = y
if y == self.nil:
self._root = z
elif z.key < y.key:
y._left = z
else:
y._right = z
z._left = self.nil
z._right = self.nil
z._red = True
self._insert_fixup(z)
def _insert_fixup(self, z):
"Restore red-black properties after insert."
while z.p.red:
if z.p == z.p.p.left:
y = z.p.p.right
if y.red:
z.p._red = False
y._red = False
z.p.p._red = True
z = z.p.p
else:
if z == z.p.right:
z = z.p
self._left_rotate(z)
z.p._red = False
z.p.p._red = True
self._right_rotate(z.p.p)
else:
y = z.p.p.left
if y.red:
z.p._red = False
y._red = False
z.p.p._red = True
z = z.p.p
else:
if z == z.p.left:
z = z.p
self._right_rotate(z)
z.p._red = False
z.p.p._red = True
self._left_rotate(z.p.p)
self.root._red = False
def _left_rotate(self, x):
"Left rotate x."
y = x.right
x._right = y.left
if y.left != self.nil:
y.left._p = x
y._p = x.p
if x.p == self.nil:
self._root = y
elif x == x.p.left:
x.p._left = y
else:
x.p._right = y
y._left = x
x._p = y
def _right_rotate(self, y):
"Left rotate y."
x = y.left
y._left = x.right
if x.right != self.nil:
x.right._p = y
x._p = y.p
if y.p == self.nil:
self._root = x
elif y == y.p.right:
y.p._right = x
else:
y.p._left = x
x._right = y
y._p = x
def check_invariants(self):
"@return: True iff satisfies all criteria to be red-black tree."
def is_red_black_node(node):
"@return: num_black"
# check has _left and _right or neither
if (node.left and not node.right) or (node.right and not node.left):
return 0, False
# check leaves are black
if not node.left and not node.right and node.red:
return 0, False
# if node is red, check children are black
if node.red and node.left and node.right:
if node.left.red or node.right.red:
return 0, False
# descend tree and check black counts are balanced
if node.left and node.right:
# check children's parents are correct
if self.nil != node.left and node != node.left.p:
return 0, False
if self.nil != node.right and node != node.right.p:
return 0, False
# check children are ok
left_counts, left_ok = is_red_black_node(node.left)
if not left_ok:
return 0, False
right_counts, right_ok = is_red_black_node(node.right)
if not right_ok:
return 0, False
# check children's counts are ok
if left_counts != right_counts:
return 0, False
return left_counts, True
else:
return 0, True
num_black, is_ok = is_red_black_node(self.root)
return is_ok and not self.root._red
def write_tree_as_dot(t, f, show_nil=False):
"Write the tree in the dot language format to f."
def node_id(node):
return 'N%d' % id(node)
def node_color(node):
if node.red:
return "red"
else:
return "black"
def visit_node(node):
"Visit a node."
print >> f, " %s [label=\"%s\", color=\"%s\"];" % (node_id(node), node, node_color(node))
if node.left:
if node.left != t.nil or show_nil:
visit_node(node.left)
print >> f, " %s -> %s ;" % (node_id(node), node_id(node.left))
if node.right:
if node.right != t.nil or show_nil:
visit_node(node.right)
print >> f, " %s -> %s ;" % (node_id(node), node_id(node.right))
print >> f, "// Created by rbtree.write_dot()"
print >> f, "digraph red_black_tree {"
visit_node(t.root)
print >> f, "}"
def test_tree(t, keys):
"Insert keys one by one checking invariants and membership as we go."
assert t.check_invariants()
for i, key in enumerate(keys):
for key2 in keys[:i]:
assert t.nil != t.search(key2)
for key2 in keys[i:]:
assert (t.nil == t.search(key2)) ^ (key2 in keys[:i])
t.insert_key(key)
assert t.check_invariants()
if '__main__' == __name__:
import os, sys, numpy.random as R
def write_tree(t, filename):
"Write the tree as an SVG file."
f = open('%s.dot' % filename, 'w')
write_tree_as_dot(t, f)
f.close()
os.system('dot %s.dot -Tsvg -o %s.svg' % (filename, filename))
# test the rbtree
R.seed(2)
size=50
keys = R.randint(-50, 50, size=size)
t = rbtree()
test_tree(t, keys)
write_tree(t, 'tree')
|
Thanks. Any benchmarks?
I'm afraid I didn't benchmark it. What would you have liked to have seen it benchmarked against? set? The tree as it stands is more like a multiset.
I implemented it to solve a problem that was way too slow when I coded it using the built-in data types. This tree was easily quick enough. For the record what I needed was an augmented red-black tree that worked on intervals (see Cormen, Leiserson, Rivest, Stein 2nd edition pg 311). Augmenting the tree was relatively straightforward.
Your test does not count the number of black nodes.
Hi John,
I have used your code and commented it a bit: https://github.com/MartinThoma/algorithms/blob/master/datastructures/redBlackTree.py
I've changed your check_invariants and added a check if the red-black-tree is still a search tree.
I've also added a method for deletion which does NOT work by now. I'm still working on it.
(See http://www.d.umn.edu/~ddunham/cs4521f10/notes/ch13.txt for notes on the code)
I got it work :-)
Currently I only have 93% branch coverage. 18 statements are missing and 14 are only partially executed. See http://www.martin-thoma.de/redblacktree/htmlcov/redBlackTree.html for the report.
Does anybody know some testcases to get 100%?
Great! Thanks for taking the time to improve it so much.
A word of caution: this implementation is likely very, very slow.
If you need to maintain a sorted list, dict, or set, check out the Python sortedcontainers module. It's pure-Python and fast-as-C implementations. There's a performance comparison page with benchmark results and a discussion of alternative implementations.