gamma function and natural logarithm of gamma function are part of C99 standard library but not available on all platforms. this module makes them accessible.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | ''' gamma function and its natural logarithm'''
##/* @(#)er_lgamma.c 5.1 93/09/24 */
##/*
## * ====================================================
## * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
## *
## * Developed at SunPro, a Sun Microsystems, Inc. business.
## * Permission to use, copy, modify, and distribute this
## * software is freely granted, provided that this notice
## * is preserved.
## * ====================================================
## *
## */
##original code from: http://www.sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/src/newlib/libm/mathfp/er_lgamma.c?rev=1.6&content-type=text/plain&cvsroot=src
##/* Method:
## * 1. Argument Reduction for 0 < x <= 8
## * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
## * reduce x to a number in [1.5,2.5] by
## * lgamma(1+s) = log(s) + lgamma(s)
## * for example,
## * lgamma(7.3) = log(6.3) + lgamma(6.3)
## * = log(6.3*5.3) + lgamma(5.3)
## * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
## * 2. Polynomial approximation of lgamma around its
## * minimun ymin=1.461632144968362245 to maintain monotonicity.
## * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
## * Let z = x-ymin;
## * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
## * where
## * poly(z) is a 14 degree polynomial.
## * 2. Rational approximation in the primary interval [2,3]
## * We use the following approximation:
## * s = x-2.0;
## * lgamma(x) = 0.5*s + s*P(s)/Q(s)
## * with accuracy
## * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
## * Our algorithms are based on the following observation
## *
## * zeta(2)-1 2 zeta(3)-1 3
## * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
## * 2 3
## *
## * where Euler = 0.5771... is the Euler constant, which is very
## * close to 0.5.
## *
## * 3. For x>=8, we have
## * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
## * (better formula:
## * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
## * Let z = 1/x, then we approximation
## * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
## * by
## * 3 5 11
## * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
## * where
## * |w - f(z)| < 2**-58.74
## *
## * 4. For negative x, since (G is gamma function)
## * -x*G(-x)*G(x) = pi/sin(pi*x),
## * we have
## * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
## * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
## * Hence, for x<0, signgam = sign(sin(pi*x)) and
## * lgamma(x) = log(|Gamma(x)|)
## * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
## * Note: one should avoid compute pi*(-x) directly in the
## * computation of sin(pi*(-x)).
## *
## * 5. Special Cases
## * lgamma(2+s) ~ s*(1-Euler) for tiny s
## * lgamma(1)=lgamma(2)=0
## * lgamma(x) ~ -log(x) for tiny x
## * lgamma(0) = lgamma(inf) = inf
## * lgamma(-integer) = +-inf
## *
## */
##
from math import *
two52= 4.50359962737049600000e+15
half= 5.00000000000000000000e-01
one = 1.00000000000000000000e+00
pi = 3.14159265358979311600e+00
a0 = 7.72156649015328655494e-02
a1 = 3.22467033424113591611e-01
a2 = 6.73523010531292681824e-02
a3 = 2.05808084325167332806e-02
a4 = 7.38555086081402883957e-03
a5 = 2.89051383673415629091e-03
a6 = 1.19270763183362067845e-03
a7 = 5.10069792153511336608e-04
a8 = 2.20862790713908385557e-04
a9 = 1.08011567247583939954e-04
a10 = 2.52144565451257326939e-05
a11 = 4.48640949618915160150e-05
tc = 1.46163214496836224576e+00
tf = -1.21486290535849611461e-01
##/* tt = -(tail of tf) */
tt = -3.63867699703950536541e-18
t0 = 4.83836122723810047042e-01
t1 = -1.47587722994593911752e-01
t2 = 6.46249402391333854778e-02
t3 = -3.27885410759859649565e-02
t4 = 1.79706750811820387126e-02
t5 = -1.03142241298341437450e-02
t6 = 6.10053870246291332635e-03
t7 = -3.68452016781138256760e-03
t8 = 2.25964780900612472250e-03
t9 = -1.40346469989232843813e-03
t10 = 8.81081882437654011382e-04
t11 = -5.38595305356740546715e-04
t12 = 3.15632070903625950361e-04
t13 = -3.12754168375120860518e-04
t14 = 3.35529192635519073543e-04
u0 = -7.72156649015328655494e-02
u1 = 6.32827064025093366517e-01
u2 = 1.45492250137234768737e+00
u3 = 9.77717527963372745603e-01
u4 = 2.28963728064692451092e-01
u5 = 1.33810918536787660377e-02
v1 = 2.45597793713041134822e+00
v2 = 2.12848976379893395361e+00
v3 = 7.69285150456672783825e-01
v4 = 1.04222645593369134254e-01
v5 = 3.21709242282423911810e-03
s0 = -7.72156649015328655494e-02
s1 = 2.14982415960608852501e-01
s2 = 3.25778796408930981787e-01
s3 = 1.46350472652464452805e-01
s4 = 2.66422703033638609560e-02
s5 = 1.84028451407337715652e-03
s6 = 3.19475326584100867617e-05
r1 = 1.39200533467621045958e+00
r2 = 7.21935547567138069525e-01
r3 = 1.71933865632803078993e-01
r4 = 1.86459191715652901344e-02
r5 = 7.77942496381893596434e-04
r6 = 7.32668430744625636189e-06
w0 = 4.18938533204672725052e-01
w1 = 8.33333333333329678849e-02
w2 = -2.77777777728775536470e-03
w3 = 7.93650558643019558500e-04
w4 = -5.95187557450339963135e-04
w5 = 8.36339918996282139126e-04
w6 = -1.63092934096575273989e-03
zero= 0.00000000000000000000e+00
##inf = float('inf')
##nan = float('nan')
inf = float(9e999)
def sin_pi(x):
x = float(x)
e,ix = frexp(x)
if(abs(x)<0.25):
return -sin(pi*x)
y = -x ##/* x is assume negative */
## * argument reduction, make sure inexact flag not raised if input
## * is an integer
z = floor(y)
if(z!=y):
y *= 0.5
y = 2.0*(y - floor(y)) ##/* y = |x| mod 2.0 */
n = int(y*4.0)
else:
if(abs(ix)>=53):
y = zero
n = 0 ##/* y must be even */
else:
if(abs(ix)<52):
z = y+two52 ##/* exact */
e,n=frexp(z)
n &= 1
y = n
n<<= 2
if n == 0:
y = sin(pi*y)
elif (n == 1 or n == 2):
y = cos(pi*(0.5-y))
elif (n == 3 or n == 4):
y = sin(pi*(one-y))
elif (n == 5 or n == 6):
y = -cos(pi*(y-1.5))
else:
y = sin(pi*(y-2.0))
z = cos(pi*(z+1.0));
return -y*z
def Lgamma(x):
'''return natural logarithm of gamma function of x
raise ValueError if x is negative integer'''
x = float(x)
##/* purge off +-inf, NaN, +-0, and negative arguments */
if ((x == inf) or (x == -inf)):
return inf
## if (x is nan):
## return nan
e,ix = frexp(x)
nadj = 0
signgamp = 1
if ((e==0.0) and (ix==0)):
return inf
if (ix>1020):
return inf
if ((e != 0.0) and (ix<-71)):
if (x<0):
return -log(-x)
else:
return -log(x)
if (e<0):
if (ix>52):
return inf ##one/zero
t = sin_pi(x)
if (t==zero):
##return inf
raise ValueError('gamma not defined for negative integer')
nadj = log(pi/fabs(t*x))
if (t<zero):
signgamp = -1
x = -x
##/* purge off 1 and 2 */
if ((x==2.0) or (x==1.0)):
r = 0.0
##/* for x < 2.0 */
elif (ix<2):
if(x<=0.9): ##/* lgamma(x) = lgamma(x+1)-log(x) */
r = -log(x)
if (x>=0.7316):
y = one-x
z = y*y
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))))
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))))
p = y*p1+p2
r += (p-0.5*y)
elif (x>=0.23164):
y= x-(tc-one)
z = y*y
w = z*y
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))) ## /* parallel comp */
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)))
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)))
p = z*p1-(tt-w*(p2+y*p3))
r += (tf + p)
else:
y = x
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))))
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))))
r += (-0.5*y + p1/p2)
else:
r = zero
if(x>=1.7316):
y=2.0-x ##/* [1.7316,2] */
z = y*y
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))))
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))))
p = y*p1+p2
r += (p-0.5*y)
elif(x>=1.23164):
y=x-tc ##/* [1.23,1.73] */
z = y*y
w = z*y
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))) ## /* parallel comp */
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)))
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)))
p = z*p1-(tt-w*(p2+y*p3))
r += (tf + p)
else:
y=x-one
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))))
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))))
r += (-0.5*y + p1/p2)
##/* x < 8.0 */
elif(ix<4):
i = int(x)
t = zero
y = x-i
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))))
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))
r = half*y+p/q
z = one ##/* lgamma(1+s) = log(s) + lgamma(s) */
while (i>2):
i -=1
z *= (y+i)
r += log(z)
##/* 8.0 <= x < 2**58 */
elif (ix<58):
t = log(x)
z = one/x
y = z*z
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))))
r = (x-half)*(t-one)+w
##/* 2**58 <= x <= inf */
else:
r = x*(log(x)-one)
if (e<0):
r = nadj - r
return signgamp*r
def Gamma(x):
'''return gamma function of x
raise ValueError if x is negative integer'''
x = float(x)
if x == 0.0:
return inf
s = 1.0
if (x<0):
s = cos(pi*floor(x))
return s*exp(Lgamma(x))
|
feature request is open to add errors and gammas functions to Python 2.7/3.1 see: http://bugs.python.org/issue3366 as for error functions, here are the pure Python codes for gamma function and its natural logarithm. comments are greatly appreciated
the original code can be found at: http://www.sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/src/newlib/libm/mathfp/er_lgamma.c?rev=1.6&content-type=text/plain&cvsroot=src