error functions are part of C99 standard library but not yet implemented on all platforms. this module makes them available.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | '''error function and complementary error function
'''
##/*
## * ====================================================
## * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
## *
## * Developed at SunPro, a Sun Microsystems, Inc. business.
## * Permission to use, copy, modify, and distribute this
## * software is freely granted, provided that this notice
## * is preserved.
## * ====================================================
## */
##
##/* double erf(double x)
## * double erfc(double x)
## * original code from: http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/src/newlib/libm/math/s_erf.c?rev=1.1.1.1&cvsroot=src
## * x
## * 2 |\
## * erf(x) = --------- | exp(-t*t)dt
## * sqrt(pi) \|
## * 0
## *
## * erfc(x) = 1-erf(x)
## * Note that
## * erf(-x) = -erf(x)
## * erfc(-x) = 2 - erfc(x)
## *
## * Method:
## * 1. For |x| in [0, 0.84375]
## * erf(x) = x + x*R(x^2)
## * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
## * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
## * where R = P/Q where P is an odd poly of degree 8 and
## * Q is an odd poly of degree 10.
## * -57.90
## * | R - (erf(x)-x)/x | <= 2
## *
## *
## * Remark. The formula is derived by noting
## * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
## * and that
## * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
## * is close to one. The interval is chosen because the fix
## * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
## * near 0.6174), and by some experiment, 0.84375 is chosen to
## * guarantee the error is less than one ulp for erf.
## *
## * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
## * c = 0.84506291151 rounded to single (24 bits)
## * erf(x) = sign(x) * (c + P1(s)/Q1(s))
## * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
## * 1+(c+P1(s)/Q1(s)) if x < 0
## * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
## * Remark: here we use the taylor series expansion at x=1.
## * erf(1+s) = erf(1) + s*Poly(s)
## * = 0.845.. + P1(s)/Q1(s)
## * That is, we use rational approximation to approximate
## * erf(1+s) - (c = (single)0.84506291151)
## * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
## * where
## * P1(s) = degree 6 poly in s
## * Q1(s) = degree 6 poly in s
## *
## * 3. For x in [1.25,1/0.35(~2.857143)],
## * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
## * erf(x) = 1 - erfc(x)
## * where
## * R1(z) = degree 7 poly in z, (z=1/x^2)
## * S1(z) = degree 8 poly in z
## *
## * 4. For x in [1/0.35,28]
## * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
## * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
## * = 2.0 - tiny (if x <= -6)
## * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
## * erf(x) = sign(x)*(1.0 - tiny)
## * where
## * R2(z) = degree 6 poly in z, (z=1/x^2)
## * S2(z) = degree 7 poly in z
## *
## * Note1:
## * To compute exp(-x*x-0.5625+R/S), let s be a single
## * precision number and s := x; then
## * -x*x = -s*s + (s-x)*(s+x)
## * exp(-x*x-0.5626+R/S) =
## * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
## * Note2:
## * Here 4 and 5 make use of the asymptotic series
## * exp(-x*x)
## * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
## * x*sqrt(pi)
## * We use rational approximation to approximate
## * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
## * Here is the error bound for R1/S1 and R2/S2
## * |R1/S1 - f(x)| < 2**(-62.57)
## * |R2/S2 - f(x)| < 2**(-61.52)
## *
## * 5. For inf > x >= 28
## * erf(x) = sign(x) *(1 - tiny) (raise inexact)
## * erfc(x) = tiny*tiny (raise underflow) if x > 0
## * = 2 - tiny if x<0
## *
## * 7. Special case:
## * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
## * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
## * erfc/erf(NaN) is NaN
## */
from math import *
tiny= 1e-300
half= 5.00000000000000000000e-01
one = 1.00000000000000000000e+00
two = 2.00000000000000000000e+00
erx = 8.45062911510467529297e-01
## Coefficients for approximation to erf on [0,0.84375]
efx = 1.28379167095512586316e-01
efx8= 1.02703333676410069053e+00
pp0 = 1.28379167095512558561e-01
pp1 = -3.25042107247001499370e-01
pp2 = -2.84817495755985104766e-02
pp3 = -5.77027029648944159157e-03
pp4 = -2.37630166566501626084e-05
qq1 = 3.97917223959155352819e-01
qq2 = 6.50222499887672944485e-02
qq3 = 5.08130628187576562776e-03
qq4 = 1.32494738004321644526e-04
qq5 = -3.96022827877536812320e-06
def erf1(x):
'''erf(x) for x in [0,0.84375]'''
e, i = frexp(x)
if abs(i)>28:
if abs(i)>57:
return 0.125*(8.0*x+efx8*x)
return x + efx*x
z = x*x
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)))
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
y = r/s
return x + x*y
def erfc1(x):
'''erfc(x)for x in [0,0.84375]'''
e,i = frexp(x)
if abs(i)>56:
return one-x
z = x*x
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)))
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
y = r/s
if (x<0.25):
return one-(x+x*y)
else:
r = x*y
r += (x-half)
return half - r
## Coefficients for approximation to erf in [0.84375,1.25]
pa0 = -2.36211856075265944077e-03
pa1 = 4.14856118683748331666e-01
pa2 = -3.72207876035701323847e-01
pa3 = 3.18346619901161753674e-01
pa4 = -1.10894694282396677476e-01
pa5 = 3.54783043256182359371e-02
pa6 = -2.16637559486879084300e-03
qa1 = 1.06420880400844228286e-01
qa2 = 5.40397917702171048937e-01
qa3 = 7.18286544141962662868e-02
qa4 = 1.26171219808761642112e-01
qa5 = 1.36370839120290507362e-02
qa6 = 1.19844998467991074170e-02
def erf2(x):
'''erf(x) for x in [0.84375,1.25]'''
s = fabs(x)-one
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
if x>=0:
return erx + P/Q
return -erx - P/Q
def erfc2(x):
'''erfc(x) for x in [0.84375, 1.25]'''
return one-erf2(x)
## Coefficients for approximation to erfc in [1.25,1/0.35]
ra0 = -9.86494403484714822705e-03
ra1 = -6.93858572707181764372e-01
ra2 = -1.05586262253232909814e+01
ra3 = -6.23753324503260060396e+01
ra4 = -1.62396669462573470355e+02
ra5 = -1.84605092906711035994e+02
ra6 = -8.12874355063065934246e+01
ra7 = -9.81432934416914548592e+00
sa1 = 1.96512716674392571292e+01
sa2 = 1.37657754143519042600e+02
sa3 = 4.34565877475229228821e+02
sa4 = 6.45387271733267880336e+02
sa5 = 4.29008140027567833386e+02
sa6 = 1.08635005541779435134e+02
sa7 = 6.57024977031928170135e+00
sa8 = -6.04244152148580987438e-02
def erf3(x):
'''erf(x) for x in [1.25,2.857142]'''
x0=x
x = fabs(x)
s = one/(x*x)
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
z = ldexp(x0,0)
r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)
if(x0>=0):
return one-r/x
else:
return r/x-one;
def erfc3(x):
'''erfc(x) for x in [1.25,1/0.35]'''
return one-erf3(x)
## Coefficients for approximation to erfc in [1/.35,28]
rb0 = -9.86494292470009928597e-03
rb1 = -7.99283237680523006574e-01
rb2 = -1.77579549177547519889e+01
rb3 = -1.60636384855821916062e+02
rb4 = -6.37566443368389627722e+02
rb5 = -1.02509513161107724954e+03
rb6 = -4.83519191608651397019e+02
sb1 = 3.03380607434824582924e+01
sb2 = 3.25792512996573918826e+02
sb3 = 1.53672958608443695994e+03
sb4 = 3.19985821950859553908e+03
sb5 = 2.55305040643316442583e+03
sb6 = 4.74528541206955367215e+02
sb7 = -2.24409524465858183362e+01
def erf4(x):
'''erf(x) for x in [1/.35,6]'''
x0=x
x = fabs(x)
s = one/(x*x)
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
z = ldexp(x0,0)
r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)
if(z>=0):
return one-r/x
else:
return r/x-one;
def erfc4(x):
'''erfc(x) for x in [2.857142,6]'''
return one-erf4(x)
def erf5(x):
'''erf(x) for |x| in [6,inf)'''
if x>0:
return one-tiny
return tiny-one
def erfc5(x):
'''erfc(x) for |x| in [6,inf)'''
if (x>0):
return tiny*tiny
return two-tiny
#############
##inf = float('inf')
##nan = float('nan')
###########
inf = float(9e999)
def Erf(x):
'''return the error function of x'''
f = float(x)
if (f == inf):
return 1.0
elif (f == -inf):
return -1.0
## elif (f is nan):
## return nan
else:
if (abs(x)<0.84375):
return erf1(x)
elif (0.84375<=abs(x)<1.25):
return erf2(x)
elif (1.25<=abs(x)<2.857142):
return erf3(x)
elif (2.857142<=abs(x)<6):
return erf4(x)
elif (abs(x)>=6):
return erf5(x)
def Erfc(x):
'''return the complementary of error function of x'''
f = float(x)
if (f == inf):
return 0.0
elif (f is -inf):
return 2.0
## elif (f == nan):
## return nan
else:
if (abs(x)<0.84375):
return erfc1(x)
elif (0.84375<=abs(x)<1.25):
return erfc2(x)
elif (1.25<=abs(x)<2.857142):
return erfc3(x)
elif (2.857142<=abs(x)<6):
return erfc4(x)
elif (abs(x)>=6):
return erfc5(x)
|
errors functions and gammas functions are likely to be integrated into the Python 2.7/3.1 math module. posting pure Python codes for these functions was suggested, so here they are. the script need to be tested extensively and it would be nice if one can compare the results with other tools. comments are greatly appreciated so we can select the best approach to implement these functions.
the original code of this script can be found at: http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/src/newlib/libm/math/s_erf.c?rev=1.1.1.1&cvsroot=src
if we know other algorithms (with appropriate licence) that can be used with Python, please let me know!