Welcome, guest | Sign In | My Account | Store | Cart

2D Fluid Simulation using FHP LGCA (Lattice Gas Cellular Automata)

Simulates fluid flow in a circular channel.

It works really slow but I think it can be a lot faster if it modified for NumPy and possibly Py2Exe.

But my main goal was to provide easy to understand code (not performance) anyway.

Python, 221 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# 2D Fluid Simulation using FHP LGCA (Lattice Gas Cellular Automata)
# Simulates fluid flow in a circular channel.
# Particles go out from right side and enter back from left.
# Reference:
# Lattice Gas Cellular Automata and Lattice Boltzmann Models by Wolf-Gladrow
# FB - 20140818
import math
import random
from PIL import Image
imgx = 512; imgy = 512 # image size
image = Image.new("RGB", (imgx, imgy))
pixels = image.load()
# simulation parameters:
tilesX = 32
tilesY = 32
n = 8 # coarse graining tile size is n by n
timeSteps = 300

nodesX = tilesX * n
nodesY = tilesY * n
nodes = [[[0 for x in range(nodesX)] for y in range(nodesY)] for z in range(6)]
obstacle = [[0 for x in range(nodesX)] for y in range(nodesY)]

# insert a square obstacle in the middle
for y in range(nodesY / 4):
    for x in range(nodesX / 4):
        obstacle[y + nodesY / 2 - nodesY / 8][x + nodesX / 2 - nodesX / 8] = 1

# fill-up with fluid flowing towards right
for y in range(1, nodesY - 1): # do not include top/bottom walls
    for x in range(nodesX):
        if obstacle[y][x] != 1:               
            nodes[0][y][x] = 1

for t in range(timeSteps): # run the simulation

    # HANDLE COLLISIONS
    
    # collisions at non-boundary nodes
    for y in range(1, nodesY - 1): # do not include top/bottom walls
        for x in range(nodesX):
            if obstacle[y][x] != 1:
                cell = [nodes[z][y][x] for z in range(6)]
                numParticles = sum(cell)

                # only 2 or 3 symmetric particle collisions implemented here
                if numParticles == 3:
                    if cell[0] == cell[2] and cell[2] == cell[4]:
                        # invert the cell contents
                        for z in range(6):
                            nodes[z][y][x] = 1 - cell[z]
                elif numParticles == 2:
                    # find the cell of one of the particles
                    p = cell.index(1)
                    # its diametric opposite must occupied as well
                    if p > 2:
                        pass
                    elif cell[p + 3] == 0:
                        pass
                    else:
                        # randomly rotate the particle pair clockwise or
                        # counterclockwise
                        if random.randint(0, 1) == 0: # counterclockwise
                            nodes[0][y][x] = cell[5]
                            nodes[1][y][x] = cell[0]
                            nodes[2][y][x] = cell[1]
                            nodes[3][y][x] = cell[2]
                            nodes[4][y][x] = cell[3]
                            nodes[5][y][x] = cell[4]
                        else: # clockwise
                            nodes[0][y][x] = cell[1]
                            nodes[1][y][x] = cell[2]
                            nodes[2][y][x] = cell[3]
                            nodes[3][y][x] = cell[4]
                            nodes[4][y][x] = cell[5]
                            nodes[5][y][x] = cell[0]

    # collisions along top/bottom walls (no-slip)
    for x in range(nodesX):
        cell = [nodes[z][0][x] for z in range(6)]
        nodes[0][0][x] = cell[3]
        nodes[1][0][x] = cell[4]
        nodes[2][0][x] = cell[5]
        nodes[3][0][x] = cell[0]
        nodes[4][0][x] = cell[1]
        nodes[5][0][x] = cell[2]
        cell = [nodes[z][nodesY - 1][x] for z in range(6)]
        nodes[0][nodesY - 1][x] = cell[3]
        nodes[1][nodesY - 1][x] = cell[4]
        nodes[2][nodesY - 1][x] = cell[5]
        nodes[3][nodesY - 1][x] = cell[0]
        nodes[4][nodesY - 1][x] = cell[1]
        nodes[5][nodesY - 1][x] = cell[2]
            
    # collisions at obstacle points (no-slip)
    for y in range(nodesY):
        for x in range(nodesX):
            if obstacle[y][x] == 1:
                cell = [nodes[z][y][x] for z in range(6)]
                nodes[0][y][x] = cell[3]
                nodes[1][y][x] = cell[4]
                nodes[2][y][x] = cell[5]
                nodes[3][y][x] = cell[0]
                nodes[4][y][x] = cell[1]
                nodes[5][y][x] = cell[2]

    # HANDLE MOVEMENTS

    nodesNew = [[[0 for x in range(nodesX)] for y in range(nodesY)] for z in range(6)]

    for y in range(nodesY):
        for x in range(nodesX):
            cell = [nodes[z][y][x] for z in range(6)]

            # propagation in the 0-direction
            neighbor_y = y
            if x == nodesX - 1:
                neighbor_x = 0 
            else:
                neighbor_x = x + 1
            nodesNew[0][neighbor_y][neighbor_x] = cell[0]

            # propagation in the 1-direction
            if y != nodesY - 1:
                neighbor_y = y + 1
                if y % 2 == 1:
                    if x == nodesX - 1:
                        neighbor_x = 1
                    else:
                        neighbor_x = x + 1
                else:
                    neighbor_x = x
                nodesNew[1][neighbor_y][neighbor_x] = cell[1]

            # propagation in the 2-direction
            if y != nodesY - 1:
                neighbor_y = y + 1
                if y % 2 == 0:
                    if x == 0:
                        neighbor_x = nodesX - 1
                    else:
                        neighbor_x = x - 1
                else:
                    neighbor_x = x
                nodesNew[2][neighbor_y][neighbor_x] = cell[2]

            # propagation in the 3-direction
            neighbor_y = y
            if x == 0:
                neighbor_x = nodesX - 1
            else:
                neighbor_x = x - 1
            nodesNew[3][neighbor_y][neighbor_x] = cell[3]

            # propagation in the 4-direction
            if y != 0:
                neighbor_y = y - 1
                if y % 2 == 0:
                    if x == 0:
                        neighbor_x = nodesX - 1
                    else:
                        neighbor_x = x - 1
                else:
                    neighbor_x = x
                nodesNew[4][neighbor_y][neighbor_x] = cell[4]

            # propagation in the 5-direction
            if y != 0:
                neighbor_y = y - 1
                if y % 2 == 1:
                    if x == nodesX - 1:
                        neighbor_x = 0
                    else:
                        neighbor_x = x + 1
                else:
                    neighbor_x = x
                nodesNew[5][neighbor_y][neighbor_x] = cell[5]
    
    nodes = nodesNew
    
    print '%' + str(100 * t / timeSteps) # show progress

# Create an image from the final state
# Calculate average velocity vectors for tiles
aveVelocityVectorMag = [[0.0 for x in range(tilesX)] for y in range(tilesY)]
aveVelocityVectorAng = [[0.0 for x in range(tilesX)] for y in range(tilesY)]
pi2 = math.pi * 2.0
dx = [math.cos(i * pi2 / 6.0) for i in range(6)]
dy = [math.sin(i * pi2 / 6.0) for i in range(6)]    
for ty in range(tilesY):
    for tx in range(tilesX):
        vx = 0.0
        vy = 0.0
        for cy in range(n):
            for cx in range(n):
                for z in range(6):
                    if nodes[z][ty * n + cy][tx * n + cx] == 1 \
                       and obstacle[ty * n + cy][tx * n + cx] == 0:
                        vx += dx[z]
                        vy += dy[z]
        aveVelocityVectorMag[ty][tx] = math.hypot(vx, vy) / n ** 2.0
        aveVelocityVectorAng[ty][tx] = (math.atan2(vy, vx) + pi2) % pi2

for ky in range(imgy):
    iy = nodesY * ky / imgy
    jy = tilesY * ky / imgy
    for kx in range(imgx):
        ix = nodesX * kx / imgx
        jx = tilesX * kx / imgx
        if obstacle[iy][ix] == 1: # paint the obstacle(s)
            red = 0
            grn = 0
            blu = 255
        else: # use vector magnitude and angle for coloring
            aveVelVecMag = aveVelocityVectorMag[jy][jx]
            aveVelVecAng = aveVelocityVectorAng[jy][jx]
            red = int(aveVelVecMag * 255)
            grn = int(aveVelVecAng / pi2 * 255)
            blu = 0
        pixels[kx, ky] = (red, grn, blu)
image.save("FHP_LGCA_2DFluidSim.png", "PNG")

2 comments

John Park 4 years, 11 months ago  # | flag

File "C:/Users/POS/Documents/Python Scripts/2D FLUID SIMULATION USING FHP LGCA.py", line 32, in <module> for y in range(nodesY / 4):

TypeError: 'float' object cannot be interpreted as an integer

I got an error as above. Please advice me!!

FB36 (author) 4 years, 11 months ago  # | flag

I just downloaded the code and run it no problem. I am guessing you maybe using Python 3.x. I had written this code using Python 2.7.x. They are not fully compatible versions. Also you would need to get and install PIL library for it to work.