Welcome, guest | Sign In | My Account | Store | Cart
#On the name of ALLAH and may the blessing and peace of Allah 
#be upon the Messenger of Allah Mohamed Salla Allahu Aliahi Wassalam.
#Author : Fouad Teniou
#Date : 06/07/10
#version :2.6

"""
maclaurin_cosh is a function to compute cosh(x) using maclaurin series
and the interval of convergence is -inf < x < +inf
cosh(x) = 1+ x^2/2! + x^4/4! + x^6/6! ...........
"""


from math import *

def maclaurin_cosh(value, k):
   
"""
    Compute maclaurin's series approximation for cosh(x).
    """

   
   
global first_value
    first_value
= 0.0
   
   
#attempt to Approximate cosh(x) for a given value
   
try:
       
for item in xrange(0,k,2):
            next_value
=(value*pi/180)**item/factorial(item)
            first_value
+= next_value
             
       
return first_value

   
#Raise TypeError if input is not a number
   
except TypeError:
       
print 'Please enter an integer or a float value'

if __name__ == "__main__":
   
    maclaurin_cosh1
= maclaurin_cosh(70,100)
   
print maclaurin_cosh1
    maclaurin_cosh2
= maclaurin_cosh(45,100)
   
print maclaurin_cosh2
    maclaurin_cosh3
= maclaurin_cosh(30,100)
   
print maclaurin_cosh3
######################################################################
#C:\python
#1.8438869882
#1.32460908925
#1.14023832108

Diff to Previous Revision

--- revision 1 2010-07-07 11:59:06
+++ revision 2 2010-07-07 12:01:34
@@ -41,10 +41,7 @@
     maclaurin_cosh3
= maclaurin_cosh(30,100)
     
print maclaurin_cosh3
 
######################################################################
-#FT  "C:\python
+#C:\python
 
#1.8438869882
 
#1.32460908925
 
#1.14023832108
-#####################################################################
-Hyperbolic functions are very common in the engineering field and they are related to trigonometric functions, thus, trigonometric functions could be expressed in terms of exponential(x)
-The hyperbolic cosine cosh(x) =(e^x + e^-x)/2.

History