Image projection onto sphere using Equirectangular map projection.
Download the test image from the Wikipedia page!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | # Image Projection onto Sphere
# https://en.wikipedia.org/wiki/Equirectangular_projection
# Download the test image from the Wikipedia page!
# FB36 - 20160731
import math, random
from PIL import Image
imgxOutput = 768; imgyOutput = 768
pi2 = math.pi * 2
# 3D Sphere Rotation Angles (arbitrary)
xy = -pi2 * random.random()
xz = -pi2 * random.random()
yz = -pi2 * random.random()
sxy = math.sin(xy); cxy = math.cos(xy)
sxz = math.sin(xz); cxz = math.cos(xz)
syz = math.sin(yz); cyz = math.cos(yz)
imageInput = Image.open("Equirectangular_projection_SW.jpg")
(imgxInput, imgyInput) = imageInput.size
pixelsInput = imageInput.load()
imageOutput = Image.new("RGB", (imgxOutput, imgyOutput))
pixelsOutput = imageOutput.load()
# define a sphere behind the screen
xc = (imgxOutput - 1.0) / 2
yc = (imgyOutput - 1.0) / 2
zc = min((imgxOutput - 1.0), (imgyOutput - 1.0)) / 2
r = min((imgxOutput - 1.0), (imgyOutput - 1.0)) / 2
# define eye point
xo = (imgxOutput - 1.0) / 2
yo = (imgyOutput - 1.0) / 2
zo = -min((imgxOutput - 1.0), (imgyOutput - 1.0))
xoc = xo - xc
yoc = yo - yc
zoc = zo - zc
doc2 = xoc * xoc + yoc * yoc + zoc * zoc
for yi in range(imgyOutput):
for xi in range(imgxOutput):
xio = xi - xo
yio = yi - yo
zio = 0.0 - zo
dio = math.sqrt(xio * xio + yio * yio + zio * zio)
xl = xio / dio
yl = yio / dio
zl = zio / dio
dot = xl * xoc + yl * yoc + zl * zoc
val = dot * dot - doc2 + r * r
if val >= 0: # if there is line-sphere intersection
if val == 0: # 1 intersection point
d = -dot
else: # 2 intersection points => choose the closest
d = min(-dot + math.sqrt(val), -dot - math.sqrt(val))
xd = xo + xl * d
yd = yo + yl * d
zd = zo + zl * d
x = (xd - xc) / r
y = (yd - yc) / r
z = (zd - zc) / r
x0=x*cxy-y*sxy;y=x*sxy+y*cxy;x=x0 # xy-plane rotation
x0=x*cxz-z*sxz;z=x*sxz+z*cxz;x=x0 # xz-plane rotation
y0=y*cyz-z*syz;z=y*syz+z*cyz;y=y0 # yz-plane rotation
lng = (math.atan2(y, x) + pi2) % pi2
lat = math.acos(z)
ix = int((imgxInput - 1) * lng / pi2 + 0.5)
iy = int((imgyInput - 1) * lat / math.pi + 0.5)
try:
pixelsOutput[xi, yi] = pixelsInput[ix, iy]
except:
pass
imageOutput.save("World.png", "PNG")
|