

	Skip to Search
	Skip to Navigation
	Skip to Content

 	

 	Community

|
 	Code

|
 	Docs

|
 	Downloads ▼
 	Perl
	Python
	Tcl
	Komodo IDE

|
 	more ▼
 	Lists
	Support
	PPM Index
	PyPM Index

 Welcome, guest
 | Sign In

 | My Account
 | Store
 | Cart

 ActiveState Code » Recipes

Languages
Tags
Authors
Sets

PDF Text Extraction using fitz / MuPDF (PyMuPDF)
(Python recipe)
by Jorj X. McKie

 ActiveState Code (http://code.activestate.com/recipes/580626/)

 Extract all the text of a PDF (or other supported container types) at very high speed.
In general, text pieces of a PDF page are not arranged in natural reading order, but in the order they were entered during PDF creation.
This script re-arranges text blocks according to their pixel coordinates to achieve a more readable output, i.e. top-down, left-right.

 Python, 97 lines
 Download

 Copy to clipboard

 	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
	#!/usr/bin/env python
"""
Created on Wed Jul 29 07:00:00 2015

@author: Jorj McKie
Copyright (c) 2015 Jorj X. McKie

The license of this program is governed by the GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007. See the "COPYING" file of this repository.

This is an example for using the Python binding PyMuPDF of MuPDF.

This program extracts the text of an input PDF and writes it in a text file.
The input file name is provided as a parameter to this script (sys.argv[1])
The output file name is input-filename appended with ".txt".
Encoding of the text in the PDF is assumed to be UTF-8.
Change the ENCODING variable as required.

"""
import fitz # this is PyMuPDF
import sys, json

ENCODING = "UTF-8"

def SortBlocks(blocks):
 '''
 Sort the blocks of a TextPage in ascending vertical pixel order,
 then in ascending horizontal pixel order.
 This should sequence the text in a more readable form, at least by
 convention of the Western hemisphere: from top-left to bottom-right.
 If you need something else, change the sortkey variable accordingly ...
 '''

 sblocks = []
 for b in blocks:
 x0 = str(int(b["bbox"][0]+0.99999)).rjust(4,"0") # x coord in pixels
 y0 = str(int(b["bbox"][1]+0.99999)).rjust(4,"0") # y coord in pixels
 sortkey = y0 + x0 # = "yx"
 sblocks.append([sortkey, b])
 sblocks.sort()
 return [b[1] for b in sblocks] # return sorted list of blocks

def SortLines(lines):
 ''' Sort the lines of a block in ascending vertical direction. See comment
 in SortBlocks function.
 '''
 slines = []
 for l in lines:
 y0 = str(int(l["bbox"][1] + 0.99999)).rjust(4,"0")
 slines.append([y0, l])
 slines.sort()
 return [l[1] for l in slines]

def SortSpans(spans):
 ''' Sort the spans of a line in ascending horizontal direction. See comment
 in SortBlocks function.
 '''
 sspans = []
 for s in spans:
 x0 = str(int(s["bbox"][0] + 0.99999)).rjust(4,"0")
 sspans.append([x0, s])
 sspans.sort()
 return [s[1] for s in sspans]

#==
Main Program
#==
ifile = sys.argv[1]
ofile = ifile + ".txt"

doc = fitz.Document(ifile)
pages = doc.pageCount
fout = open(ofile,"w")

for i in range(pages):
 pg_text = "" # initialize page text buffer
 pg = doc.loadPage(i) # load page number i
 text = pg.getText(output = 'json') # get its text in JSON format
 pgdict = json.loads(text) # create a dict out of it
 blocks = SortBlocks(pgdict["blocks"]) # now re-arrange ... blocks
 for b in blocks:
 lines = SortLines(b["lines"]) # ... lines
 for l in lines:
 spans = SortSpans(l["spans"]) # ... spans
 for s in spans:
 # ensure that spans are separated by at least 1 blank
 # (should make sense in most cases)
 if pg_text.endswith(" ") or s["text"].startswith(" "):
 pg_text += s["text"]
 else:
 pg_text += " " + s["text"]
 pg_text += "\n" # separate lines by newline

 pg_text = pg_text.encode(ENCODING, "ignore")
 fout.write(pg_text)

fout.close()

 Tags: cbz, epub, mupdf, openxps, pdf, pymupdf, text_extraction, xps

2 comments

 Jorj X. McKie (author)
 7 years, 11 months ago

 #
 |
 flag

 Please note, that the script also works for the other file types that are supported by MuPDF: OpenXPS, CBZ, EPUB, ...

 Jorj X. McKie (author)
 7 years, 11 months ago

 #
 |
 flag

 For whom it may be of interest:

(Py-) MuPDF text extraction is (one of) the fastest ways to extract text from PDFs. Several dozen (sic!)times faster than pdfminer, still sveral times faster than XPDF utilities, etc.

Similar statements hold true for other PyMuPDF capabilities like image rendering.

Have a look at PyMuPDF's documentation appendix (hosted at PyPI) - you will find many details on performance comparisons.

	

	
Created by Jorj X. McKie
on Thu, 17 Mar 2016
(GPL3)

	◄	Python recipes (4591)	►
	◄	Jorj X. McKie's recipes (22)	►

Tags

	cbz
	epub
	mupdf
	openxps
	pdf
	pymupdf
	text_extraction
	xps

▶ Show machine tags (8) 	meta:language=python
	meta:license=gpl3
	meta:loc=97
	meta:min_python_2=7
	meta:min_python_3=3
	meta:requires=json
	meta:requires=pymupdf
	meta:score=1

 Required Modules

 	pymupdf

	json

Other Information and Tasks

	Licensed under the GPL 3
	Viewed 34759 times
	Revision 1

 Accounts

 	Create Account (Free!)
	Sign In

 Code Recipes

 	Recipes
	Languages
	Tags
	Authors
	Sets

 Feedback & Information

 	About
	FAQ
	Terms of Service

 ActiveState

 	ActiveState Blog
	Perl Solutions
	Python Solutions
	Tcl Solutions
	Download ActivePerl
	Download ActivePython
	Download ActiveTcl
	About ActiveState
	Careers

 Privacy Policy
 | Contact Us
 | Support

 © 2024 ActiveState Software Inc. All rights reserved.
 ActiveState®, Komodo®, ActiveState Perl Dev Kit®,
 ActiveState Tcl Dev Kit®, ActivePerl®, ActivePython®,
 and ActiveTcl® are registered trademarks of ActiveState.
 All other marks are property of their respective owners.

 x

Undo

