Directly computes derivatives from ordinary Python functions using auto differentiation. The technique directly computes the desired derivatives to full precision without resorting to symbolic math and without making estimates bases on numerical methods.
The module provides a Num class for "dual" numbers that performs both regular floating point math on a value and its derivative at the same time. In addition, the module provides drop-in substitutes for most of the functions in the math module. There are also tools for partial derivatives, directional derivatives, gradients of scalar fields, and the curl and divergence of vector fields.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | 'Toolkit for automatic-differentiation of Python functions'
# Resources for automatic-differentiation:
# https://en.wikipedia.org/wiki/Automatic_differentiation
# https://justindomke.wordpress.com/2009/02/17/
# http://www.autodiff.org/
from __future__ import division
import math
## Dual Number Class #####################################################
class Num(float):
''' The auto-differentiation number class works likes a float
for a function input, but all operations on that number
will concurrently compute the derivative.
Creating Nums
-------------
New numbers are created with: Num(x, dx)
Make constants (not varying with respect to x) with: Num(3.5)
Make variables (that vary with respect to x) with: Num(3.5, 1.0)
The short-cut for Num(3.5, 1.0) is: Var(3.5)
Accessing Nums
--------------
Convert a num back to a float with: float(n)
The derivative is accessed with: n.dx
Or with a the short-cut function: d(n)
Functions of One Variable
-------------------------
>>> f = lambda x: cos(2.5 * x) ** 3
>>> y = f(Var(1.5)) # Evaluate at x=1.5
>>> y # f(1.5)
-0.552497105486732
>>> y.dx # f'(1.5)
2.88631746797551
Partial Derivatives and Gradients of Multi-variable Functions
-------------------------------------------------------------
The tool can also be used to compute gradients of multivariable
functions by making one of the inputs variable and the keeping
the remaining inputs constant:
>>> f = lambda x, y: x*y + sin(x)
>>> f(2.5, 3.5) # Evaluate at (2.5, 3.5)
9.348472144103956
>>> d(f(Var(2.5), 3.5)) # Partial with respect to x
2.6988563844530664
>>> d(f(2.5, Var(3.5))) # Partial with respect to y
2.5
>>> gradient(f, (2.5, 3.5))
(2.6988563844530664, 2.5)
See: https://www.wolframalpha.com/input/?lk=3&i=grad(x*y+%2B+sin(x))
'''
# Tables of Derivatives:
# http://hyperphysics.phy-astr.gsu.edu/hbase/math/derfunc.html
# http://tutorial.math.lamar.edu/pdf/Common_Derivatives_Integrals.pdf
# http://www.nps.edu/Academics/Schools/GSEAS/Departments/Math/pdf_sources/BlueBook27.pdf
# https://www.wolframalpha.com/input/?lk=3&i=d%2Fdx(u(x)%5E(v(x)))
__slots__ = ['dx']
def __new__(cls, value, dx=0.0):
if isinstance(value, cls): return value
inst = float.__new__(cls, value)
inst.dx = dx
return inst
def __add__(u, v):
return Num(float(u) + float(v), d(u) + d(v))
def __sub__(u, v):
return Num(float(u) - float(v), d(u) - d(v))
def __mul__(u, v):
u, v, du, dv = float(u), float(v), d(u), d(v)
return Num(u * v, u * dv + v * du)
def __truediv__(u, v):
u, v, du, dv = float(u), float(v), d(u), d(v)
return Num(u / v, (v * du - u * dv) / v ** 2.0)
def __pow__(u, v):
u, v, du, dv = float(u), float(v), d(u), d(v)
return Num(u ** v,
(v * u ** (v - 1.0) * du if du else 0.0) +
(math.log(u) * u ** v * dv if dv else 0.0))
def __floordiv__(u, v):
return Num(float(u) // float(v), 0.0)
def __mod__(u, v):
u, v, du, dv = float(u), float(v), d(u), d(v)
return Num(u % v, du - u // v * dv)
def __pos__(u):
return u
def __neg__(u):
return Num(-float(u), -d(u))
__radd__ = __add__
__rmul__ = __mul__
def __rsub__(self, other):
return -(self - other)
def __rtruediv__(self, other):
return Num(other) / self
def __rpow__(self, other):
return Num(other) ** self
def __rmod__(u, v):
return Num(v) % u
def __rfloordiv__(self, other):
return Num(other) // self
def __abs__(self):
return self if self >= 0.0 else -self
## Convenience Functions #################################################
Var = lambda x: Num(x, 1.0)
d = lambda x: getattr(x, 'dx', 0.0)
## Math Module Functions and Constants ###################################
sqrt = lambda u: Num(math.sqrt(u), d(u) / (2.0 * math.sqrt(u)))
log = lambda u: Num(math.log(u), d(u) / float(u))
log2 = lambda u: Num(math.log2(u), d(u) / (float(u) * math.log(2.0)))
log10 = lambda u: Num(math.log10(u), d(u) / (float(u) * math.log(10.0)))
log1p = lambda u: Num(math.log1p(u), d(u) / (float(u) + 1.0))
exp = lambda u: Num(math.exp(u), math.exp(u) * d(u))
expm1 = lambda u: Num(math.expm1(u), math.exp(u) * d(u))
sin = lambda u: Num(math.sin(u), math.cos(u) * d(u))
cos = lambda u: Num(math.cos(u), -math.sin(u) * d(u))
tan = lambda u: Num(math.tan(u), d(u) / math.cos(u) ** 2.0)
sinh = lambda u: Num(math.sinh(u), math.cosh(u) * d(u))
cosh = lambda u: Num(math.cosh(u), math.sinh(u) * d(u))
tanh = lambda u: Num(math.tanh(u), d(u) / math.cosh(u) ** 2.0)
asin = lambda u: Num(math.asin(u), d(u) / math.sqrt(1.0 - float(u) ** 2.0))
acos = lambda u: Num(math.acos(u), -d(u) / math.sqrt(1.0 - float(u) ** 2.0))
atan = lambda u: Num(math.atan(u), d(u) / (1.0 + float(u) ** 2.0))
asinh = lambda u: Num(math.asinh(u), d(u) / math.hypot(u, 1.0))
acosh = lambda u: Num(math.acosh(u), d(u) / math.sqrt(float(u) ** 2.0 - 1.0))
atanh = lambda u: Num(math.atanh(u), d(u) / (1.0 - float(u) ** 2.0))
radians = lambda u: Num(math.radians(u), math.radians(d(u)))
degrees = lambda u: Num(math.degrees(u), math.degrees(d(u)))
erf = lambda u: Num(math.erf(u),
2.0 / math.sqrt(math.pi) * math.exp(-(float(u) ** 2.0)) * d(u))
erfc = lambda u: Num(math.erfc(u),
-2.0 / math.sqrt(math.pi) * math.exp(-(float(u) ** 2.0)) * d(u))
hypot = lambda u, v: Num(math.hypot(u, v),
(u * d(u) + v * d(v)) / math.hypot(u, v))
fsum = lambda u: Num(math.fsum(map(float, u)), math.fsum(map(d, u)))
fabs = lambda u: abs(Num(u))
fmod = lambda u, v: Num(u) % v
copysign = lambda u, v: Num(math.copysign(u, v),
d(u) if math.copysign(1.0, float(u) * float(v)) > 0.0 else -d(u))
ceil = lambda u: Num(math.ceil(u), 0.0)
floor = lambda u: Num(math.floor(u), 0.0)
trunc = lambda u: Num(math.trunc(u), 0.0)
pi = Num(math.pi)
e = Num(math.e)
## Backport Python 3 Math Module Functions ###############################
if not hasattr(math, 'isclose'):
math.isclose = lambda x, y, rel_tol=1e-09: abs(x/y - 1.0) <= rel_tol
if not hasattr(math, 'log2'):
math.log2 = lambda x: math.log(x) / math.log(2.0)
## Vector Functions ######################################################
def partial(func, point, index):
''' Partial derivative at a given point
>>> func = lambda x, y: x*y + sin(x)
>>> point = (2.5, 3.5)
>>> partial(func, point, 0) # Partial with respect to x
2.6988563844530664
>>> partial(func, point, 1) # Partial with respect to y
2.5
'''
return d(func(*[Num(x, i==index) for i, x in enumerate(point)]))
def gradient(func, point):
''' Vector of the partial derivatives of a scalar field
>>> func = lambda x, y: x*y + sin(x)
>>> point = (2.5, 3.5)
>>> gradient(func, point)
(2.6988563844530664, 2.5)
See: https://www.wolframalpha.com/input/?lk=3&i=grad(x*y+%2B+sin(x))
'''
return tuple(partial(func, point, index) for index in range(len(point)))
def directional_derivative(func, point, direction):
''' The dot product of the gradient and a direction vector.
Computed directly with a single function call.
>>> func = lambda x, y: x*y + sin(x)
>>> point = (2.5, 3.5)
>>> direction = (1.5, -2.2)
>>> directional_derivative(func, point, direction)
-1.4517154233204006
Same result as separately computing and dotting the gradient:
>>> math.fsum(g * d for g, d in zip(gradient(func, point), direction))
-1.4517154233204002
See: https://en.wikipedia.org/wiki/Directional_derivative
'''
return d(func(*map(Num, point, direction)))
def divergence(F, point):
''' Sum of the partial derivatives of a vector field
>>> F = lambda x, y, z: (x*y+sin(x)+3*x, x-y-5*x, cos(2*x)-sin(y)**2)
>>> divergence(F, (3.5, 2.1, -3.3))
3.163543312709203
# http://www.wolframalpha.com/input/?i=div+%7Bx*y%2Bsin(x)%2B3*x,+x-y-5*x,+cos(2*x)-sin(y)%5E2%7D
>>> x, y, z = (3.5, 2.1, -3.3)
>>> math.cos(x) + y + 2
3.1635433127092036
>>> F = lambda x, y, z: (8 * exp(-x), cosh(z), - y**2)
>>> divergence(F, (2, -1, 4))
-1.0826822658929016
# https://www.youtube.com/watch?v=S2rT2zK2bdo
>>> x, y, z = (2, -1, 4)
>>> -8 * math.exp(-x)
-1.0826822658929016
'''
return math.fsum(d(F(*[Num(x, i==index) for i, x in enumerate(point)])[index])
for index in range(len(point)))
def curl(F, point):
''' Rotation around a vector field
>>> F = lambda x, y, z: (x*y+sin(x)+3*x, x-y-5*x, cos(2*x)-sin(y)**2)
>>> curl(F, (3.5, 2.1, -3.3))
(0.8715757724135881, 1.3139731974375781, -7.5)
# http://www.wolframalpha.com/input/?i=curl+%7Bx*y%2Bsin(x)%2B3*x,+x-y-5*x,+cos(2*x)-sin(y)%5E2%7D
>>> x, y, z = (3.5, 2.1, -3.3)
>>> (-2 * math.sin(y) * math.cos(y), 2 * math.sin(2 * x), -x - 4)
(0.8715757724135881, 1.3139731974375781, -7.5)
# https://www.youtube.com/watch?v=UW4SQz29TDc
>>> F = lambda x, y, z: (y**4 - x**2 * z**2, x**2 + y**2, -x**2 * y * z)
>>> curl(F, (1, 3, -2))
(2.0, -8.0, -106.0)
>>> F = lambda x, y, z: (8 * exp(-x), cosh(z), - y**2)
>>> curl(F, (2, -1, 4))
(-25.289917197127753, 0.0, 0.0)
# https://www.youtube.com/watch?v=S2rT2zK2bdo
>>> x, y, z = (2, -1, 4)
>>> (-(x * y + math.sinh(z)), 0.0, 0.0)
(-25.289917197127753, 0.0, 0.0)
'''
x, y, z = point
_, Fyx, Fzx = map(d, F(Var(x), y, z))
Fxy, _, Fzy = map(d, F(x, Var(y), z))
Fxz, Fyz, _ = map(d, F(x, y, Var(z)))
return (Fzy - Fyz, Fxz - Fzx, Fyx - Fxy)
if __name__ == '__main__':
# River flow example: https://www.youtube.com/watch?v=vvzTEbp9lrc
W = 20 # width of river in meters
C = 0.1 # max flow divided by (W/2)**2
F = lambda x, y=0, z=0: (0.0, C * x * (W - x), 0.0)
for x in range(W+1):
print('%d --> %r' % (x, curl(F, (x, 0.0, 0.0))))
def numeric_derivative(func, x, eps=0.001):
'Estimate the derivative using numerical methods'
y0 = func(x - eps)
y1 = func(x + eps)
return (y1 - y0) / (2.0 * eps)
def test(x_array, *testcases):
for f in testcases:
print(f.__name__.center(40))
print('-' * 40)
for x in map(Var, x_array):
y = f(x)
actual = d(y)
expected = numeric_derivative(f, x, 2**-16)
print('%7.3f %12.4f %12.4f' % (x, actual, expected))
assert math.isclose(expected, actual, rel_tol=1e-5)
print('')
def test_pow_const_base(x):
return 3.1 ** (2.3 * x + 0.4)
def test_pow_const_exp(x):
return (2.3 * x + 0.4) ** (-1.3)
def test_pow_general(x):
return (x / 3.5) ** sin(3.5 * x)
def test_hyperbolics(x):
return 3 * cosh(1/x) + 5 * sinh(x/2.5) ** 2 - 0.7 * tanh(1.7/x) ** 1.5
def test_sqrt(x):
return cos(sqrt(abs(sin(x) + 5)))
def test_conversions(x):
return degrees(x ** 1.5 + 18) * radians(0.83 ** x + 37)
def test_hypot(x):
return hypot(sin(x), cos(1.1 / x))
def test_erf(x):
return (sin(x) * erf(x**0.85 - 3.123) +
cos(x) * erfc(x**0.851 - 3.25))
def test_rounders(x):
return (tan(x) * floor(cos(x**2 + 0.37) * 2.7) +
log(x) * ceil(cos(x**3 + 0.31) * 12.1) * 10.1 +
exp(x) * trunc(sin(x**1.4 + 8.0)) * 1234.567)
def test_inv_trig(x):
return (atan((x - 0.303) ** 2.9 + 0.1234) +
acos((x - 4.1) / 3.113) * 5 +
asin((x - 4.3) / 3.717))
def test_mod(x):
return 137.1327 % (sin(x + 0.3) * 40.123) + cos(x) % 5.753
def test_logs(x):
return log2(fabs(sin(x))) + log10(fabs(cos(x))) + log1p(fabs(tan(x)))
def test_fsum(x):
import random
random.seed(8675309)
data = [Num(random.random()**x, random.random()**x) for i in range(100)]
return fsum(data)
def test_inv_hyperbolics(x):
return (acosh(x**1.1234567 + 0.89) + 3.51 * asinh(x**1.234567 + 8.9) +
atanh(x / 15.0823))
def test_copysign(x):
return (copysign(7.17 * x + 5.11, 1.0) + copysign(4.1 * x, 0.0) +
copysign(8.909 * x + 0.18, -0.0) + copysign(4.321 * x + .12, -1.0) +
copysign(-3.53 * x + 11.5, 1.0) + copysign(-1.4 * x + 2.1, 0.0) +
copysign(-9.089 * x + 0.813, -0.0) + copysign(-1.2347 * x, -1.0) +
copysign(sin(x), x - math.pi))
def test_combined(x):
return (1.7 - 3 * cos(x) ** 2 / sin(3 * x) * 0.1 * exp(+cos(x)) +
sqrt(abs(x - 4.13)) + tan(2.5 * x) * log(3.1 * x**1.5) +
(4.7 * x + 3.1) ** cos(0.43 * x + 8.1) - 2.9 + tan(-x) +
sqrt(radians(log(x) + 1.7)) + e / x + expm1(x / pi))
x_array = [2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5]
tests = [test_combined, test_pow_const_base, test_pow_const_exp,
test_pow_general, test_hyperbolics, test_sqrt, test_copysign,
test_inv_trig, test_conversions, test_hypot, test_rounders,
test_inv_hyperbolics, test_mod, test_logs, test_fsum, test_erf]
test(x_array, *tests)
# Run doctests when the underlying C math library matches the one used to
# generate the code examples (the approximation algorithms vary slightly).
if 2 + math.sinh(4) == 29.289917197127753:
import doctest
print(doctest.testmod())
|
I did a lot of work in automatic differentiation back in the 1980's. It's nice to see this in python.
I wonder what kind of machine you are running on or if my python is compiled differently. On my arch linux x64 machine I see these failures caused by some difference in accuracy
Older versions of Python had a slightly different repr for the same floating point values. The other issue is that different Python builds link to different underlying C math libraries which sometimes give slightly different results (i.e. they might use different approximations to estimate sinh()).
Unfortunately, doctest looks for exact string matches and has no notion of two floats being very close to each other.
Hello, how do I use your library for getting the second derivative of a function (third, and so on)?
For example:
f(x) = sin(x)
f'(x) = cos(x) "first derivative"
f''(x) = f'(f'(x)) = -sin(x) "third derivative"
f'''(x) = f'(f''(x)) = ... "fourth derivative"
I've used the following instructions, but I'm unable to get past the first derivative:
Thanks