# Random Planet Generator Using 3D Plasma Fractal
# and Voxel-based Ray Tracing for rendering
# (Instead of generating 2D Plasma Fractal and projecting onto sphere,
# it generates 3D Plasma Fractal (cube) and cuts sphere from it.)
# FB - 20160125
import math
import random
from PIL import Image
imgx = 256; imgy = 256; imgz = 256
image = Image.new("RGB", (imgx, imgy))
pixels = image.load()
print "Creating voxels..."
# each voxel can have RGB color
voxelRGB = [[[(0, 0, 0) for x in range(imgx)] for y in range(imgy)] for z in range(imgz)]
# each voxel can have an opacity coefficient 0 or 1 (for simplicity)
opacity = [[[0 for x in range(imgx)] for y in range(imgy)] for z in range(imgz)]
eye = (imgx / 2.0, imgy / 2.0, -imgz / 2.0)
mx = imgx - 1; my = imgy - 1; mz = imgz - 1
f = 5.0 # roughness
def rnd():
return (random.random() - .5) * f
def putvoxel(x, y, z, r, g, b):
global voxelRGB, opacity
x = int(round(x)); y = int(round(y)); z = int(round(z))
voxelRGB[z][y][x] = (int(round(r)), int(round(g)), int(round(b)))
opacity[z][y][x] = 1
def getvoxel(x, y, z):
return voxelRGB[int(round(z))][int(round(y))][int(round(x))]
def CreatePlasmaCube(): # using non-recursive Diamond-square Algorithm
global voxelRGB, opacity
# corners
for kz in range(2):
for ky in range(2):
for kx in range(2):
putvoxel(mx * kx, my * ky, mz * kz, \
random.randint(0, 255), \
random.randint(0, 255), \
random.randint(0, 255))
j = -1
while True:
j += 1; j2 = 2 ** j
jx = float(mx) / j2; jy = float(my) / j2; jz = float(mz) / j2
if jx < 1 and jy < 1 and jz < 1: break
for m in range(j2):
z0 = m * jz; z1 = z0 + jz; z = z0 + jz / 2.0
for i in range(j2):
y0 = i * jy; y1 = y0 + jy; y = y0 + jy / 2.0
for k in range(j2):
x0 = k * jx; x1 = x0 + jx; x = x0 + jx / 2.0
a = getvoxel(x0, y0, z0); b = getvoxel(x1, y0, z0)
c = getvoxel(x0, y1, z0); d = getvoxel(x1, y1, z0)
e = getvoxel(x0, y0, z1); f = getvoxel(x1, y0, z1)
g = getvoxel(x0, y1, z1); h = getvoxel(x1, y1, z1)
# center
putvoxel(x, y, z, \
(a[0] + b[0] + c[0] + d[0] + e[0] + f[0] + g[0] + h[0]) / 8.0, \
(a[1] + b[1] + c[1] + d[1] + e[1] + f[1] + g[1] + h[1]) / 8.0, \
(a[2] + b[2] + c[2] + d[2] + e[2] + f[2] + g[2] + h[2]) / 8.0)
# centers of 6 faces
putvoxel(x, y, z0, \
(a[0] + b[0] + c[0] + d[0]) / 4.0, \
(a[1] + b[1] + c[1] + d[1]) / 4.0, \
(a[2] + b[2] + c[2] + d[2]) / 4.0)
putvoxel(x, y, z1, \
(e[0] + f[0] + g[0] + h[0]) / 4.0, \
(e[1] + f[1] + g[1] + h[1]) / 4.0, \
(e[2] + f[2] + g[2] + h[2]) / 4.0)
putvoxel(x, y0, z, \
(a[0] + b[0] + e[0] + f[0]) / 4.0, \
(a[1] + b[1] + e[1] + f[1]) / 4.0, \
(a[2] + b[2] + e[2] + f[2]) / 4.0)
putvoxel(x, y1, z, \
(c[0] + d[0] + g[0] + h[0]) / 4.0, \
(c[1] + d[1] + g[1] + h[1]) / 4.0, \
(c[2] + d[2] + g[2] + h[2]) / 4.0)
putvoxel(x0, y, z, \
(a[0] + c[0] + e[0] + g[0]) / 4.0, \
(a[1] + c[1] + e[1] + g[1]) / 4.0, \
(a[2] + c[2] + e[2] + g[2]) / 4.0)
putvoxel(x1, y, z, \
(b[0] + d[0] + f[0] + h[0]) / 4.0, \
(b[1] + d[1] + f[1] + h[1]) / 4.0, \
(b[2] + d[2] + f[2] + h[2]) / 4.0)
# centers of 12 edges
putvoxel(x, y0, z0, \
(a[0] + b[0]) / 2.0 + jx * rnd(), \
(a[1] + b[1]) / 2.0 + jx * rnd(), \
(a[2] + b[2]) / 2.0 + jx * rnd())
putvoxel(x0, y, z0, \
(a[0] + c[0]) / 2.0 + jy * rnd(), \
(a[1] + c[1]) / 2.0 + jy * rnd(), \
(a[2] + c[2]) / 2.0 + jy * rnd())
putvoxel(x1, y, z0, \
(b[0] + d[0]) / 2.0 + jy * rnd(), \
(b[1] + d[1]) / 2.0 + jy * rnd(), \
(b[2] + d[2]) / 2.0 + jy * rnd())
putvoxel(x, y1, z0, \
(c[0] + d[0]) / 2.0 + jx * rnd(), \
(c[1] + d[1]) / 2.0 + jx * rnd(), \
(c[2] + d[2]) / 2.0 + jx * rnd())
putvoxel(x, y0, z1, \
(e[0] + f[0]) / 2.0 + jx * rnd(), \
(e[1] + f[1]) / 2.0 + jx * rnd(), \
(e[2] + f[2]) / 2.0 + jx * rnd())
putvoxel(x0, y, z1, \
(e[0] + g[0]) / 2.0 + jy * rnd(), \
(e[1] + g[1]) / 2.0 + jy * rnd(), \
(e[2] + g[2]) / 2.0 + jy * rnd())
putvoxel(x1, y, z1, \
(f[0] + h[0]) / 2.0 + jy * rnd(), \
(f[1] + h[1]) / 2.0 + jy * rnd(), \
(f[2] + h[2]) / 2.0 + jy * rnd())
putvoxel(x, y1, z1, \
(g[0] + h[0]) / 2.0 + jx * rnd(), \
(g[1] + h[1]) / 2.0 + jx * rnd(), \
(g[2] + h[2]) / 2.0 + jx * rnd())
putvoxel(x0, y0, z, \
(a[0] + e[0]) / 2.0 + jz * rnd(), \
(a[1] + e[1]) / 2.0 + jz * rnd(), \
(a[2] + e[2]) / 2.0 + jz * rnd())
putvoxel(x1, y0, z, \
(b[0] + f[0]) / 2.0 + jz * rnd(), \
(b[1] + f[1]) / 2.0 + jz * rnd(), \
(b[2] + f[2]) / 2.0 + jz * rnd())
putvoxel(x0, y1, z, \
(c[0] + g[0]) / 2.0 + jz * rnd(), \
(c[1] + g[1]) / 2.0 + jz * rnd(), \
(c[2] + g[2]) / 2.0 + jz * rnd())
putvoxel(x1, y1, z, \
(d[0] + h[0]) / 2.0 + jz * rnd(), \
(d[1] + h[1]) / 2.0 + jz * rnd(), \
(d[2] + h[2]) / 2.0 + jz * rnd())
# cx, cy, cz: center; r: radius (in voxels)
def CreateSphere(cx, cy, cz, r):
global voxelRGB, opacity
# sphere is set of voxels which have distance = r to center
for z in range(imgz):
for y in range(imgy):
for x in range(imgx):
dx = x - cx
dy = y - cy
dz = z - cz
d = math.sqrt(dx * dx + dy * dy + dz * dz)
if abs(d - r) > 1.0:
voxelRGB[z][y][x] = (0, 0, 0)
opacity[z][y][x] = 0
# Ray Tracer (traces the ray and returns an RGB color)
def RayTrace(rayX, rayY, rayZ, dx, dy, dz):
while True:
rayX += dx; rayY += dy; rayZ += dz # move the ray by 1 voxel
rayXint = int(round(rayX)); rayYint = int(round(rayY)); rayZint = int(round(rayZ))
# if ray goes outside of the voxel-box
if rayXint < 0 or rayXint > imgx - 1 \
or rayYint < 0 or rayYint > imgy - 1 \
or rayZint < 0 or rayZint > imgz - 1:
return (0, 0, 0)
# if ray hits an object
if opacity[rayZint][rayYint][rayXint] == 1:
return voxelRGB[rayZint][rayYint][rayXint]
def CreateScene():
print "Creating scene..."
CreatePlasmaCube()
CreateSphere(imgx / 2.0, imgy / 2.0, imgz / 2, min(imgx / 2.0, imgy / 2.0, imgz / 2))
def RenderScene():
print "Rendering scene..."
for ky in range(imgy):
print str(100 * ky / (imgy - 1)).zfill(3) + "%"
for kx in range(imgx):
dx = kx - eye[0]
dy = ky - eye[1]
dz = 0.0 - eye[2]
d = math.sqrt(dx * dx + dy * dy + dz * dz)
dx = dx / d; dy = dy / d; dz = dz / d # ray unit vector
pixels[kx, ky] = RayTrace(kx, ky, 0, dx, dy, dz)
# MAIN
CreateScene()
RenderScene()
image.save("RandomPlanet.png", "PNG")