Random Planet Generator using 3D Plasma Fractal and Voxel-based Ray Tracing for rendering.
Instead of generating 2D Plasma Fractal and projecting onto sphere, it generates 3D Plasma Fractal (cube) and cuts sphere from it.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | # Random Planet Generator Using 3D Plasma Fractal
# and Voxel-based Ray Tracing for rendering
# (Instead of generating 2D Plasma Fractal and projecting onto sphere,
# it generates 3D Plasma Fractal (cube) and cuts sphere from it.)
# FB - 20160125
import math
import random
from PIL import Image
imgx = 256; imgy = 256; imgz = 256
image = Image.new("RGB", (imgx, imgy))
pixels = image.load()
print "Creating voxels..."
# each voxel can have RGB color
voxelRGB = [[[(0, 0, 0) for x in range(imgx)] for y in range(imgy)] for z in range(imgz)]
# each voxel can have an opacity coefficient 0 or 1 (for simplicity)
opacity = [[[0 for x in range(imgx)] for y in range(imgy)] for z in range(imgz)]
eye = (imgx / 2.0, imgy / 2.0, -imgz / 2.0)
mx = imgx - 1; my = imgy - 1; mz = imgz - 1
f = 5.0 # roughness
def rnd():
return (random.random() - .5) * f
def putvoxel(x, y, z, r, g, b):
global voxelRGB, opacity
x = int(round(x)); y = int(round(y)); z = int(round(z))
voxelRGB[z][y][x] = (int(round(r)), int(round(g)), int(round(b)))
opacity[z][y][x] = 1
def getvoxel(x, y, z):
return voxelRGB[int(round(z))][int(round(y))][int(round(x))]
def CreatePlasmaCube(): # using non-recursive Diamond-square Algorithm
global voxelRGB, opacity
# corners
for kz in range(2):
for ky in range(2):
for kx in range(2):
putvoxel(mx * kx, my * ky, mz * kz, \
random.randint(0, 255), \
random.randint(0, 255), \
random.randint(0, 255))
j = -1
while True:
j += 1; j2 = 2 ** j
jx = float(mx) / j2; jy = float(my) / j2; jz = float(mz) / j2
if jx < 1 and jy < 1 and jz < 1: break
for m in range(j2):
z0 = m * jz; z1 = z0 + jz; z = z0 + jz / 2.0
for i in range(j2):
y0 = i * jy; y1 = y0 + jy; y = y0 + jy / 2.0
for k in range(j2):
x0 = k * jx; x1 = x0 + jx; x = x0 + jx / 2.0
a = getvoxel(x0, y0, z0); b = getvoxel(x1, y0, z0)
c = getvoxel(x0, y1, z0); d = getvoxel(x1, y1, z0)
e = getvoxel(x0, y0, z1); f = getvoxel(x1, y0, z1)
g = getvoxel(x0, y1, z1); h = getvoxel(x1, y1, z1)
# center
putvoxel(x, y, z, \
(a[0] + b[0] + c[0] + d[0] + e[0] + f[0] + g[0] + h[0]) / 8.0, \
(a[1] + b[1] + c[1] + d[1] + e[1] + f[1] + g[1] + h[1]) / 8.0, \
(a[2] + b[2] + c[2] + d[2] + e[2] + f[2] + g[2] + h[2]) / 8.0)
# centers of 6 faces
putvoxel(x, y, z0, \
(a[0] + b[0] + c[0] + d[0]) / 4.0, \
(a[1] + b[1] + c[1] + d[1]) / 4.0, \
(a[2] + b[2] + c[2] + d[2]) / 4.0)
putvoxel(x, y, z1, \
(e[0] + f[0] + g[0] + h[0]) / 4.0, \
(e[1] + f[1] + g[1] + h[1]) / 4.0, \
(e[2] + f[2] + g[2] + h[2]) / 4.0)
putvoxel(x, y0, z, \
(a[0] + b[0] + e[0] + f[0]) / 4.0, \
(a[1] + b[1] + e[1] + f[1]) / 4.0, \
(a[2] + b[2] + e[2] + f[2]) / 4.0)
putvoxel(x, y1, z, \
(c[0] + d[0] + g[0] + h[0]) / 4.0, \
(c[1] + d[1] + g[1] + h[1]) / 4.0, \
(c[2] + d[2] + g[2] + h[2]) / 4.0)
putvoxel(x0, y, z, \
(a[0] + c[0] + e[0] + g[0]) / 4.0, \
(a[1] + c[1] + e[1] + g[1]) / 4.0, \
(a[2] + c[2] + e[2] + g[2]) / 4.0)
putvoxel(x1, y, z, \
(b[0] + d[0] + f[0] + h[0]) / 4.0, \
(b[1] + d[1] + f[1] + h[1]) / 4.0, \
(b[2] + d[2] + f[2] + h[2]) / 4.0)
# centers of 12 edges
putvoxel(x, y0, z0, \
(a[0] + b[0]) / 2.0 + jx * rnd(), \
(a[1] + b[1]) / 2.0 + jx * rnd(), \
(a[2] + b[2]) / 2.0 + jx * rnd())
putvoxel(x0, y, z0, \
(a[0] + c[0]) / 2.0 + jy * rnd(), \
(a[1] + c[1]) / 2.0 + jy * rnd(), \
(a[2] + c[2]) / 2.0 + jy * rnd())
putvoxel(x1, y, z0, \
(b[0] + d[0]) / 2.0 + jy * rnd(), \
(b[1] + d[1]) / 2.0 + jy * rnd(), \
(b[2] + d[2]) / 2.0 + jy * rnd())
putvoxel(x, y1, z0, \
(c[0] + d[0]) / 2.0 + jx * rnd(), \
(c[1] + d[1]) / 2.0 + jx * rnd(), \
(c[2] + d[2]) / 2.0 + jx * rnd())
putvoxel(x, y0, z1, \
(e[0] + f[0]) / 2.0 + jx * rnd(), \
(e[1] + f[1]) / 2.0 + jx * rnd(), \
(e[2] + f[2]) / 2.0 + jx * rnd())
putvoxel(x0, y, z1, \
(e[0] + g[0]) / 2.0 + jy * rnd(), \
(e[1] + g[1]) / 2.0 + jy * rnd(), \
(e[2] + g[2]) / 2.0 + jy * rnd())
putvoxel(x1, y, z1, \
(f[0] + h[0]) / 2.0 + jy * rnd(), \
(f[1] + h[1]) / 2.0 + jy * rnd(), \
(f[2] + h[2]) / 2.0 + jy * rnd())
putvoxel(x, y1, z1, \
(g[0] + h[0]) / 2.0 + jx * rnd(), \
(g[1] + h[1]) / 2.0 + jx * rnd(), \
(g[2] + h[2]) / 2.0 + jx * rnd())
putvoxel(x0, y0, z, \
(a[0] + e[0]) / 2.0 + jz * rnd(), \
(a[1] + e[1]) / 2.0 + jz * rnd(), \
(a[2] + e[2]) / 2.0 + jz * rnd())
putvoxel(x1, y0, z, \
(b[0] + f[0]) / 2.0 + jz * rnd(), \
(b[1] + f[1]) / 2.0 + jz * rnd(), \
(b[2] + f[2]) / 2.0 + jz * rnd())
putvoxel(x0, y1, z, \
(c[0] + g[0]) / 2.0 + jz * rnd(), \
(c[1] + g[1]) / 2.0 + jz * rnd(), \
(c[2] + g[2]) / 2.0 + jz * rnd())
putvoxel(x1, y1, z, \
(d[0] + h[0]) / 2.0 + jz * rnd(), \
(d[1] + h[1]) / 2.0 + jz * rnd(), \
(d[2] + h[2]) / 2.0 + jz * rnd())
# cx, cy, cz: center; r: radius (in voxels)
def CreateSphere(cx, cy, cz, r):
global voxelRGB, opacity
# sphere is set of voxels which have distance = r to center
for z in range(imgz):
for y in range(imgy):
for x in range(imgx):
dx = x - cx
dy = y - cy
dz = z - cz
d = math.sqrt(dx * dx + dy * dy + dz * dz)
if abs(d - r) > 1.0:
voxelRGB[z][y][x] = (0, 0, 0)
opacity[z][y][x] = 0
# Ray Tracer (traces the ray and returns an RGB color)
def RayTrace(rayX, rayY, rayZ, dx, dy, dz):
while True:
rayX += dx; rayY += dy; rayZ += dz # move the ray by 1 voxel
rayXint = int(round(rayX)); rayYint = int(round(rayY)); rayZint = int(round(rayZ))
# if ray goes outside of the voxel-box
if rayXint < 0 or rayXint > imgx - 1 \
or rayYint < 0 or rayYint > imgy - 1 \
or rayZint < 0 or rayZint > imgz - 1:
return (0, 0, 0)
# if ray hits an object
if opacity[rayZint][rayYint][rayXint] == 1:
return voxelRGB[rayZint][rayYint][rayXint]
def CreateScene():
print "Creating scene..."
CreatePlasmaCube()
CreateSphere(imgx / 2.0, imgy / 2.0, imgz / 2, min(imgx / 2.0, imgy / 2.0, imgz / 2))
def RenderScene():
print "Rendering scene..."
for ky in range(imgy):
print str(100 * ky / (imgy - 1)).zfill(3) + "%"
for kx in range(imgx):
dx = kx - eye[0]
dy = ky - eye[1]
dz = 0.0 - eye[2]
d = math.sqrt(dx * dx + dy * dy + dz * dz)
dx = dx / d; dy = dy / d; dz = dz / d # ray unit vector
pixels[kx, ky] = RayTrace(kx, ky, 0, dx, dy, dz)
# MAIN
CreateScene()
RenderScene()
image.save("RandomPlanet.png", "PNG")
|
i tried this code and got errors
Next time post the errors. If I have to guess, you may get error if you run this code in Python 3.x, instead of Python 2.x. Or maybe you don't have PIL library installed.