Welcome, guest | Sign In | My Account | Store | Cart

A collection of generally used Graph Algorithms in one place with simple constructs.

Python, 839 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
# Graph Algorithms using basic python Constructs.
# Narayana Chikkam, Dec, 22, 2015.

from collections import defaultdict
from heapq import *
import itertools
import copy
from lib.unionfind import  (
    UnionFind
)
from lib.prioritydict import (
    priorityDictionary
)

class Vertex:
    def __init__(self, id):
        self.id = id
        self.neighbours = {}

    def addNeighbour(self, id, weight):
        self.neighbours[id] = weight

    def __str__(self):
        return str(self.id) + ': ' + str(self.neighbours.keys())

    def getNeighbours(self):
        return self.neighbours #.keys()

    def getName(self):
        return self.id

    def getWeight(self, id):
        return self.neighbours[id]

class Graph:

    def __init__(self):
        self.v = {}
        self.count = 0

    def addVertex(self, key):
        self.count += 1
        newV = Vertex(key)
        self.v[key] = newV

    def getVertex(self, id):
        if id in self.v.keys():
            return self.v[id]
        return None

    def __contains__(self, id):
        return id in self.v.keys()

    def addEdge(self, vertexOne, vertexTwo, weight=None): # vertexOne, vertexTwo, cost-of-the-edge
        if vertexOne not in self.v.keys():
            self.addVertex(vertexOne)
        if vertexTwo not in self.v.keys():
            self.addVertex(vertexTwo)

        self.v[vertexOne].addNeighbour(vertexTwo, weight)

    def updateEdge(self, vertexOne, vertexTwo, weight=None): # vertexOne, vertexTwo, cost-of-the-edge
       self.v[vertexOne].addNeighbour(vertexTwo, weight)

    def getVertices(self):
        return self.v.keys()

    def __str__(self):
        ret = "{ "
        for v in self.v.keys():
            ret += str(self.v[v].__str__()) + ", "

        return ret + " }"


    def __iter__(self):
        return iter(self.v.values())

    def getNeighbours(self,  vertex):
        if vertex not in self.v.keys():
            raise "Node %s not in graph" % vertex
        return self.v[vertex].neighbours #.keys()

    def getEdges(self):
        edges = []

        for node in self.v.keys():
            neighbours = self.v[node].getNeighbours()
            for w in neighbours:
                edges.append((node, w, neighbours[w])) #tuple, srcVertex, dstVertex, weightBetween
        return edges

    def findIsolated(self):
        isolated = []
        for node in self.v:
            deadNode = False
            reachable = True
            # dead node, can't reach any other node from this
            if len(self.v[node].getNeighbours()) == 0:
                deadNode = True

            # reachable from other nodes ?
            nbrs = [n.neighbours.keys() for n in self.v.values()]
            # flatten the nested list
            nbrs = list(itertools.chain(*nbrs))

            if node not in nbrs:
                reachable = False

            if deadNode == True and reachable == False:
                isolated.append(node)

        return isolated

    def getPath(self, start, end, path=[]):
        path = path + [start]
        if start == end:
            return path
        if start not in self.v:
            return None
        for vertex in self.v[start].getNeighbours():
            if vertex not in path:
                extended_path = self.getPath(vertex,
                                            end,
                                            path)
                if extended_path:
                    return extended_path
        return None

    def getAllPaths(self, start, end, path=[]):
        path = path + [start]
        if start == end:
            return [path]
        if start not in self.v:
            return []

        paths = []
        for vertex in self.v[start].getNeighbours():
            if vertex not in path:
                extended_paths = self.getAllPaths(vertex,
                                                  end,
                                                  path)
                for p in extended_paths:
                    paths.append(p)
        return paths

    def inDegree(self, vertex):
        """
           how many edges coming into this vertex
        """
        nbrs = [n.neighbours.keys() for n in self.v.values()]
        # flatten the nested list
        nbrs = list(itertools.chain(*nbrs))

        return nbrs.count(vertex)

    def outDegree(self, vertex):
        """
           how many vertices are neighbours to this vertex
        """
        adj_vertices =  self.v[vertex].getNeighbours()
        return len(adj_vertices)

    """
       The degree of a vertex is the no of edges connecting to it.
       loop is counted twice
       for an undirected Graph deg(v) = indegree(v) + outdegree(v)
    """
    def getDegree(self, vertex):
        return self.inDegree(vertex) + self.outDegree(vertex)

    def verifyDegreeSumFormula(self):
        """Handshaking lemma - Vdeg(v) = 2 |E| """
        degSum = 0
        for v in self.v:
            degSum += self.getDegree(v)

        return degSum == (2* len(self.getEdges()))

    def delta(self):
        """ the minimum degree of the Graph V """
        min = 2**64
        for vertex in self.v:
            vertex_degree = self.getDegree(vertex)
            if vertex_degree < min:
                min = vertex_degree
        return min

    def Delta(self):
        """ the maximum degree of the Graph V """
        max = -2**64
        for vertex in self.v:
            vertex_degree = self.getDegree(vertex)
            if vertex_degree > max:
                max = vertex_degree
        return max

    def degreeSequence(self):
        """
           degree sequence is the reverse sorder of the vertices degrees
           Isomorphic graphs have the same degree sequence. However,
           two graphs with the same degree sequence are not necessarily
           isomorphic.
           More-Info:
           http://en.wikipedia.org/wiki/Graph_realization_problem
        """
        seq = []
        for vertex in self.v:
            seq.append(self.getDegree(vertex))
        seq.sort(reverse=True)
        return tuple(seq)

    # helper to check if the given sequence is in non-increasing Order ;)
    @staticmethod
    def sortedInDescendingOrder(seq):
        return all (x>=y for x,y in zip(seq, seq[1:]))

    @staticmethod
    def isGraphicSequence(seq):
      """
       Assumes that the degreeSequence is a list of non negative integers
       http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Gallai_theorem
      """
      # Check to ensure there are an even number of odd degrees
      if sum(seq)%2 != 0: return False
      # Erdos-Gallai theorem
      for k in range(1, len(seq)+1):
        leftSum = sum(seq[:(k)])
        rightSum = k * (k-1) + sum([min(x, k) for x in seq[k:]])
        if leftSum > rightSum: return False
      return True

    @staticmethod
    def isGraphicSequenceIterative(s):
        # successively reduce degree sequence by removing node of maximum degree
        # as in Havel-Hakimi algorithm
        while s:
            s.sort()    # sort in increasing order
            if s[0]<0:
                return False  # check if removed too many from some node

            d=s.pop()             # pop largest degree
            if d==0: return True  # done! rest must be zero due to ordering

            # degree must be <= number of available nodes
            if d>len(s):   return False

            # remove edges to nodes of next higher degrees
            #s.reverse()  # to make it easy to get at higher degree nodes.
            for i in range(len(s)-1,len(s)-(d+1),-1):
                s[i]-=1

        # should never get here b/c either d==0, d>len(s) or d<0 before s=[]
        return False

    def density(self):
        """
        In mathematics, a dense graph is a graph in which the number of edges
        is close to the maximal number of edges. The opposite, a graph with
        only a few edges, is a sparse graph. The distinction between sparse
        and dense graphs is rather vague, and depends on the context.

        For undirected simple graphs, the graph density is defined as:
        D = (2*No-Of-Edges)/((v*(v-1))/2)
        For a complete Graph, the Density D is 1
        """
        """ method to calculate the density of a graph """
        V = len(self.v.keys())
        E = len(self.getEdges())
        return 2.0 * E / (V *(V - 1))

    """
        Choose an arbitrary node x of the graph G as the starting point
        Determine the set A of all the nodes which can be reached from x.
        If A is equal to the set of nodes of G, the graph is connected; otherwise
        it is disconnected.
    """
    def isConnected(self, start=None):
        if start == None:
            start = self.v.keys()[0]
        reachables = self.dfs(start, [])
        return len(reachables) == len(self.v.keys())

    """
        ToDo: USE CLR Approach for this Later
    """
    def dfs(self, start, path = []):
        path = path + [start]
        for v in self.v[start].getNeighbours().keys():
            if v not in path:
                path = self.dfs(v, path)
        return path

    """
       CLR Sytle
    """
    def CLR_Dfs(self):
        paths = []

        for v in self.v.keys():
            explored = self.dfs(v, [])
            if len(explored) == len(self.v.keys()):
                paths.append(explored)
        return paths

    def BFS(self, start):
        # initialize lists
        maxV = len(self.v.keys())
        processed = [False] * (maxV)   # which vertices have been processed
        discovered = [False] * (maxV)  # which vertices have been found
        parent= [-1] * (maxV)          # discovery relation

        q = []   # queue of vertices to visit */

        # enqueue(&q,start);
        q.append(start)

        discovered[start] = True

        while (len(q) != 0):
            v = q.pop(0)
            processed[v] = True

            nbrs = self.v[v].getNeighbours().keys()
            # print nbrs
            for n in nbrs:
                # if processed[n] == False
                if discovered[n] == False:
                    q.append(n)
                    discovered[n] = True
                    parent[n] = v

        return (discovered, parent)

    def findPath(self, start, end, parents, path):
        if ((start == end) or (end == -1)):
            path.append(start)
        else:
            self.findPath(start, parents[end], parents, path)
            path.append(end)

    """
       Find path between two given nodes
    """
    def find_path(self, start, end, path=[]):
        path = path + [start]
        if start == end:
            return path
        if not self.v.has_key(start):
            return None
        for node in self.v[start].getNeighbours().keys():
            if node not in path:
                newpath = self.find_path(node, end, path)
                if newpath: return newpath
        return None

    """
        Find all paths
    """
    def find_all_paths(self, start, end, path=[]):
        path = path + [start]
        if start == end:
            return [path]
        if not self.v.has_key(start):
            return []
        paths = []
        for node in self.v[start].getNeighbours().keys():
            if node not in path:
                newpaths = self.find_all_paths(node, end, path)
                for newpath in newpaths:
                    paths.append(newpath)
        return paths

    """
        Find shorted path w.r.t no of vertices on the path
    """
    def find_shortest_path(self, start, end, path=[]):
        path = path + [start]
        if start == end:
            return path
        if not self.v.has_key(start):
            return None
        shortest = None
        for node in self.v[start].getNeighbours().keys():
            if node not in path:
                newpath = self.find_shortest_path(node, end, path)
                if newpath:
                    if not shortest or len(newpath) < len(shortest):
                        shortest = newpath
        return shortest

    """
        prim's algorithm - properties: tree could be not connected during
        the finding process as it finds edges with min cost - greedy strategy
        Prims always stays as a tree
        If you don't know all the weight on edges use
        Prim's algorithm
        f you only need partial solution on the graph
        use Prim's algorithm
    """
    def mspPrims(self):
        nodes = self.v.keys()
        edges = [(u, v, c) for u in self.v.keys() for v, c in self.v[u].getNeighbours().items()]

        return self.prim(nodes, edges)

    def prim(self, nodes, edges):
        conn = defaultdict( list )
        for n1,n2,c in edges:  # makes graph undirected
            conn[ n1 ].append( (c, n1, n2) )
            conn[ n2 ].append( (c, n2, n1) )

        mst = []
        used = set()
        used.add( nodes[0] )
        usable_edges = conn[ nodes[0] ][:]
        heapify( usable_edges )

        while usable_edges:
            cost, n1, n2 = heappop( usable_edges )
            if n2 not in used:
                used.add( n2 )
                mst.append( ( n1, n2, cost ) )

                for e in conn[ n2 ]:
                    if e[ 2 ] not in used:
                        heappush( usable_edges, e )
        return mst

    """
        Kruskals begins with forest and merge into a tree
    """
    def mspKrushkals(self):
        nodes = self.v.keys()
        edges = [(c, u, v) for u in self.v.keys() for v, c in self.v[u].getNeighbours().items()]

        return self.krushkal(edges)

    def pprint(self):
        print ("{ ", end=" ")
        for u in self.v.keys():
            print (u, end=" ")
            print (": { ", end=" ")
            for v in self.v[u].getNeighbours().keys():
                print (v, ":", self.v[u].getNeighbours()[v], end=" ")
            print(" }", end= " ")
        print (" }\n")





    def krushkal(self, edges):
        """
        Return the minimum spanning tree of an undirected graph G.
        G should be represented in such a way that iter(G) lists its
        vertices, iter(G[u]) lists the neighbors of u, G[u][v] gives the
        length of edge u,v, and G[u][v] should always equal G[v][u].
        The tree is returned as a list of edges.
        """
        # Kruskal's algorithm: sort edges by weight, and add them one at a time.
        # We use Kruskal's algorithm, first because it is very simple to
        # implement once UnionFind exists, and second, because the only slow
        # part (the sort) is sped up by being built in to Python.
        subtrees = UnionFind()
        tree = []
        for c,u,v in sorted(edges): # take from small weight to large in order
            if subtrees[u] != subtrees[v]:
                tree.append((u,v, c))
                subtrees.union(u,v)
        return tree

    def adj(self, missing=float('inf')):  # makes the adj dict will all possible cells, similar to matrix
        """
           G= { 0 : { 1 : 6, 2 : 4  }
                1 : { 2 : 3, 5 : 7  }
                2 : { 3 : 9, 4 : 1  }
                3 : { 4 : 1 }
                4 : { 5 : 5, 6 : 2  }
                5 : {  }
                6 : {  }
            }

            adj(G) >>
            { 0: {0: 0, 1: 6, 2: 4, 3: inf, 4: inf, 5: inf, 6: inf},
              1: {0: inf, 1: 0, 2: 3, 3: inf, 4: inf, 5: 7, 6: inf},
              2: {0: inf, 1: inf, 2: 0, 3: 9, 4: 1, 5: inf, 6: inf},
              3: {0: inf, 1: inf, 2: inf, 3: 0, 4: 1, 5: inf, 6: inf},
              4: {0: inf, 1: inf, 2: inf, 3: inf, 4: 0, 5: 5, 6: 2},
              5: {0: inf, 1: inf, 2: inf, 3: inf, 4: inf, 5: 0, 6: inf},
              6: {0: inf, 1: inf, 2: inf, 3: inf, 4: inf, 5: inf, 6: 0}
            }
        """
        vertices = self.v.keys()
        return {v1:
             {v2: 0 if v1 == v2 else self.v[v1].getNeighbours().get(v2, missing) for v2 in vertices
             }
             for v1 in vertices
            }

    def floyds(self):
        """
            All pair shortest Path
            Idea:
            for k in (0, n):
                for i in (0, n):
                    for j in (0, n):
                    g[i][j] = min(graph[i][j], graph[i][k]+graph[k][j])
            Find the shortest distance between every pair of vertices in the weighted Graph G
        """
        d =  self.adj()  # prepare the adjacency list representation for the algorithm

        vertices = self.v.keys()

        for v2 in vertices:
            d = {v1: {v3: min(d[v1][v3], d[v1][v2] + d[v2][v3])
                     for v3 in vertices}
                 for v1 in vertices}
        return d

    def reachability(self):
        """ Idea: graph reachability floyd-warshall
            for k in (0, n):
                for i in (0, n):
                    for j in (0, n):
                    g[i][j] = graph[i][j] || (graph[i][k]&&graph[k][j]))
        """
        vertices = self.v.keys()
        d =  self.adj(float('0'))
        for u in vertices:
            for v in vertices:
                if u ==v or d[u][v]: d[u][v] = True
                else: d[u][v] = False
        for v2 in vertices:
            d = {v1: {v3: d[v1][v3] or (d[v1][v2] and d[v2][v3]) # path for v1->v3 or v1->v2, v2-?v3
                     for v3 in vertices}
                 for v1 in vertices}
        return d



    def pathRecoveryFloydWarshall(self):
        d =  self.adj()  # missing edges will have -1.0 value
        vertices = self.v.keys()

        parentMap = copy.deepcopy(d)
        for v1 in vertices:
            for v2 in vertices:
                if (v1 == v2) or d[v1][v2] == float('inf'):
                    parentMap[v1][v2] = -1
                else:
                    parentMap[v1][v2] = v1

        for i in vertices:
            for j in vertices:
                for k in vertices:
                    temp = d[i][k] + d[k][j]
                    if temp < d[i][j]:
                        d[i][j] = temp
                        parentMap[i][j] = parentMap[k][j]

        return parentMap


    def getFloydPath(self, parentMap, u, v, path=[]):
        """
            recursive procedure to get the path from parentMap matrix
        """
        path.append(v)
        if u != v and v != -1:
            self.getFloydPath(parentMap, u, parentMap[u][v], path)


    # from active recipes - handy thoughts to think about heap for this algorithm
    def dijkstra(self, start, end=None):
        """
            Find shortest paths from the start vertex to all
            vertices nearer than or equal to the end.

            The input graph G is assumed to have the following
            representation: A vertex can be any object that can
            be used as an index into a dictionary.  G is a
            dictionary, indexed by vertices.  For any vertex v,
            G[v] is itself a dictionary, indexed by the neighbors
            of v.  For any edge v->w, G[v][w] is the length of
            the edge.  This is related to the representation in
            <http://www.python.org/doc/essays/graphs.html>

            Of course, G and G[v] need not be Python dict objects;
            they can be any other object that obeys dict protocol,
            for instance a wrapper in which vertices are URLs
            and a call to G[v] loads the web page and finds its links.

            The output is a pair (D,P) where D[v] is the distance
            from start to v and P[v] is the predecessor of v along
            the shortest path from s to v.

            Dijkstra's algorithm is only guaranteed to work correctly
            when all edge lengths are positive. This code does not
            verify this property for all edges (only the edges seen
             before the end vertex is reached), but will correctly
            compute shortest paths even for some graphs with negative
            edges, and will raise an exception if it discovers that
            a negative edge has caused it to make a mistake.

            Introduction to Algorithms, 1st edition), page 528:

            G = { 's':{'u':10, 'x':5},
                 ' u':{'v':1, 'x':2},
                 'v':{'y':4},
                 'x':{'u':3, 'v':9, 'y':2},
                 'y':{'s':7, 'v':6}
            }
        """
        G = self.adj()

        D = {}    # dictionary of final distances
        P = {}    # dictionary of predecessors
        Q = priorityDictionary()   # est.dist. of non-final vert.
        Q[start] = 0

        for v in Q:
            D[v] = Q[v]
            if v == end: break

            for w in G[v]:
                vwLength = D[v] + G[v][w]
                if w in D:
                    if vwLength < D[w]:
                        raise (ValueError, "Dijkstra: found better path to already-final vertex")
                elif w not in Q or vwLength < Q[w]:
                    Q[w] = vwLength
                    P[w] = v

        return D,P

    def shortestPathDijkstra(self, start, end):
        """
        Find a single shortest path from the given start vertex
        to the given end vertex.
        The input has the same conventions as Dijkstra().
        The output is a list of the vertices in order along
        the shortest path.
        """

        D, P = self.dijkstra(start, end)
        Path = []
        while 1:
            Path.append(end)
            if end == start: break
            end = P[end]
        Path.reverse()
        return Path

    """
        smart snippet on the dijkstra alg:
        def shortestPath(graph, start, end):
            queue = [(0, start, [])]
            seen = set()
            while True:
                (cost, v, path) = heapq.heappop(queue)
                if v not in seen:
                    path = path + [v]
                    seen.add(v)
                    if v == end:
                        return cost, path
                    for (next, c) in graph[v].iteritems():
                        heapq.heappush(queue, (cost + c, next, path))
    """

    def strongly_connected_components(self):
        """
        Tarjan's Algorithm (named for its discoverer, Robert Tarjan) is a graph theory algorithm
        for finding the strongly connected components of a graph.

        Based on: http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
        """

        index_counter = [0]
        stack = []
        lowlinks = {}
        index = {}
        result = []

        def strongconnect(node):
            # set the depth index for this node to the smallest unused index
            index[node] = index_counter[0]
            lowlinks[node] = index_counter[0]
            index_counter[0] += 1
            stack.append(node)

            # Consider successors of `node`
            try:
                successors = self.v[node].getNeighbours().keys()
                print(node, successors)
            except:
                successors = []
            for successor in successors:
                if successor not in lowlinks:
                    # Successor has not yet been visited; recurse on it
                    strongconnect(successor)
                    lowlinks[node] = min(lowlinks[node],lowlinks[successor])
                elif successor in stack:
                    # the successor is in the stack and hence in the current strongly connected component (SCC)
                    lowlinks[node] = min(lowlinks[node],index[successor])

            # If `node` is a root node, pop the stack and generate an SCC
            if lowlinks[node] == index[node]:
                connected_component = []

                while True:
                    successor = stack.pop()
                    connected_component.append(successor)
                    if successor == node: break
                component = tuple(connected_component)
                # storing the result
                print(component)
                result.append(component)

        for node in self.v.keys():
            if node not in lowlinks:
                strongconnect(node)

        return result

    def computeFirstUsingSCC(self, initFirst):

        index_counter = [0]
        stack = []
        lowlinks = {}
        index = {}
        result = []
        first = {}

        def computeFirst(node):
            # set the depth index for this node to the smallest unused index
            index[node] = index_counter[0]
            lowlinks[node] = index_counter[0]
            index_counter[0] += 1
            stack.append(node)

            # Consider successors of `node`
            try:
                successors = self.v[node].getNeighbours().keys()
            except:
                successors = []
            for successor in successors:

                if successor not in lowlinks:
                    # Successor has not yet been visited; recurse on it
                    computeFirst(successor)

                    lowlinks[node] = min(lowlinks[node],lowlinks[successor])
                elif successor in stack:
                    # the successor is in the stack and hence in the current strongly connected component (SCC)
                    lowlinks[node] = min(lowlinks[node],index[successor])
                first[node] |= set(first[successor] - set(['epsilon'])).union(set(initFirst[node]))  #(*union!*)


            # If `node` is a root node, pop the stack and generate an SCC
            if lowlinks[node] == index[node]:
                connected_component = []

                while True:
                    successor = stack.pop()
                    #FIRST[w] := FIRST[v]; (*distribute!*)
                    first[successor] = set(first[node] - set(['epsilon'])).union(set(initFirst[successor]) )#(*distribute!*)
                    connected_component.append(successor)
                    if successor == node: break
                component = tuple(connected_component)
                # storing the result
                result.append(component)

        for v in initFirst:
            first[v] = initFirst[v]  #(*init!*)
        #print "init First assignment: ", first

        for node in self.v.keys():
            if node not in lowlinks:
                computeFirst(node)

        return first

    def computeFollowUsingSCC(self, FIRST, initFollow):

        index_counter = [0]
        stack = []
        lowlinks = {}
        index = {}
        result = []
        follow = {}

        def computeFollow(node):
            # set the depth index for this node to the smallest unused index
            index[node] = index_counter[0]
            lowlinks[node] = index_counter[0]
            index_counter[0] += 1
            stack.append(node)

            # Consider successors of `node`
            try:
                successors = self.v[node].getNeighbours().keys()
            except:
                successors = []
            for successor in successors:

                if successor not in lowlinks:
                    # Successor has not yet been visited; recurse on it
                    computeFollow(successor)

                    lowlinks[node] = min(lowlinks[node],lowlinks[successor])
                elif successor in stack:
                    # the successor is in the stack and hence in the current strongly connected component (SCC)
                    lowlinks[node] = min(lowlinks[node],index[successor])

                follow[node] |= follow[successor] #(*union!*)


            # If `node` is a root node, pop the stack and generate an SCC
            if lowlinks[node] == index[node]:
                connected_component = []

                while True:
                    successor = stack.pop()
                    follow[successor] = follow[node]
                    connected_component.append(successor)
                    if successor == node: break
                component = tuple(connected_component)
                # storing the result
                result.append(component)

        for v in initFollow:
            follow[v] = initFollow[v]  #(*init!*)

        for node in self.v.keys():
            if node not in lowlinks:
                computeFollow(node)

        return follow