This class is intended as a wrapper for non-hashable objects (such as lists, dictionaries, etc.) in situations where the object is known to be immutable. Example: memoization of function arguments.
Feedback much appreciated, I will update to reflect any comments.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | import collections
import operator
import sys
import itertools
import reprlib
# a wrapper to make an object hashable, while preserving equality
class AutoHash:
# for each known container type, we can optionally provide a tuple
# specifying: type, transform, aggregator
# even immutable types need to be included, since their items
# may make them unhashable
# transformation may be used to enforce the desired iteration
# the result of a transformation must be an iterable
# default: no change; for dictionaries, we use .items() to see values
# usually transformation choice only affects efficiency, not correctness
# aggregator is the function that combines all items into one object
# default: frozenset; for ordered containers, we can use tuple
# aggregator choice affects both efficiency and correctness
# e.g., using a tuple aggregator for a set is incorrect,
# since identical sets may end up with different hash values
# frozenset is safe since at worst it just causes more collisions
# unfortunately, no collections.ABC class is available that helps
# distinguish ordered from unordered containers
# so we need to just list them out manually as needed
type_info = collections.namedtuple('type_info', 'type transformation aggregator')
ident = lambda x: x
# order matters; first match is used to handle a datatype
known_types = (
type_info(dict, lambda d: d.items(), frozenset), # also handles defaultdict
type_info(collections.OrderedDict, ident, tuple),
type_info(tuple, ident, tuple),
type_info(list, ident, tuple),
type_info(collections.deque, ident, tuple),
type_info(collections.Iterable, ident, frozenset) # other iterables
)
# hash_func can be set to replace the built-in hash function
# cache can be turned on; if it is, cycles will be detected,
# otherwise cycles in a data structure will cause failure
def __init__(self, data, hash_func=hash, cache=False, verbose=False):
self._data=data
self.hash_func=hash_func
self.verbose=verbose
self.cache=cache
# cache objects' hashes for performance and to deal with cycles
if self.cache:
self.seen={}
def hash_ex(self, o):
# note: isinstance(o, Hashable) won't check inner types
try:
if self.verbose:
print(type(o), reprlib.repr(o), self.hash_func(o), file=sys.stderr)
return self.hash_func(o)
except TypeError:
pass
# we let built-in hash decide if the hash value is worth caching
# so we don't cache the built-in hash results
if self.cache and id(o) in self.seen:
return self.seen[id(o)][0] # found in cache
# check if o can be handled by decomposing it into components
for typ, transformation, aggregator in AutoHash.known_types:
if isinstance(o, typ):
# another option is:
# result = reduce(operator.xor, map(_hash_ex, handler(o)))
# but collisions are more likely with xor than with frozenset
# e.g. hash_ex([1,2,3,4])==0 with xor
try:
# try to frozenset the actual components, it's faster
h = self.hash_func(aggregator(transformation(o)))
except TypeError:
# components not hashable with built-in;
# apply our extended hash function to them
h = self.hash_func(aggregator(map(self.hash_ex, transformation(o))))
if self.cache:
# storing the object too, otherwise memory location will be reused
self.seen[id(o)] = (h, o)
if self.verbose:
print(type(o), reprlib.repr(o), h, file=sys.stderr)
return h
raise TypeError('Object {} of type {} not hashable'.format(repr(o), type(o)))
def __hash__(self):
return self.hash_ex(self._data)
def __eq__(self, other):
# short circuit to save time
if self is other:
return True
# 1) type(self) a proper subclass of type(other) => self.__eq__ will be called first
# 2) any other situation => lhs.__eq__ will be called first
# case 1. one side is a subclass of the other, and AutoHash.__eq__ is not overridden in either
# => the subclass instance's __eq__ is called first, and we should compare self._data and other._data
# case 2. neither side is a subclass of the other; self is lhs
# => we can't compare to another type; we should let the other side decide what to do, return NotImplemented
# case 3. neither side is a subclass of the other; self is rhs
# => we can't compare to another type, and the other side already tried and failed;
# we should return False, but NotImplemented will have the same effect
# any other case: we won't reach the __eq__ code in this class, no need to worry about it
if isinstance(self, type(other)): # identifies case 1
return self._data == other._data
else: # identifies cases 2 and 3
return NotImplemented
if __name__ == '__main__':
d = {'a':[1,2], 2:{3:4}, frozenset((1,2,3)):5, frozenset((5,6)): {5,6}}
d = AutoHash(d, verbose=True, cache=True)
print(hash(d))
|
In some situations, we may know that a mutable container is safe to hash. However, there's no simple way to hash a container that may have nested containers. This is an attempt to create a relatively general solution for this problem.