Simple approach to calculating FIFO pnl.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | from collections import deque
import random
'''
Example below replicates
+75 MSFT 25.10
+50 MSFT 25.12
-100 MSFT 25.22
Realized P&L = 75 * (25.22 - 25.10) + 25 * (25.22 - 25.12) = $ 11.50
A Trade is split into a set of unit positions that are then dequeued on FIFO basis as part of Sell.
'''
number_of_sell_trades = 1000
max_sell_quentity = 5
min_sell_price = 23.00
max_sell_price = 27.00
class TradeManager():
def __init__(self):
# FIFO queue that we can use to enqueue unit buys and
# dequeue unit sells.
self.fifo = deque()
self.profit = []
def __repr__(self):
return 'position size: %d'%(len(self.fifo))
def execute_with_total_pnl(self, direction, quantity, price):
#print direction, quantity, price, 'position size', len(self.fifo)
if len(self.fifo) == 0:
return 0
if 'Sell' in (direction):
if len(self.fifo) >= quantity:
return sum([(price - fill.price) for fill in tm.execute(direction, quantity, price)])
else:
return 0
else:
return [tm.execute(direction, quantity, price)]
def execute(self, direction, quantity, price):
#print direction, quantity, price, 'position size', len(self.fifo)
if direction in ('Buy'):
for i, fill in Trade(direction, quantity, price):
self.fifo.appendleft(fill)
yield fill
elif direction in ('Sell'):
for i, fill in Trade(direction, quantity, price):
yield self.fifo.pop()
class Fill():
def __init__(self, price):
self.price = price
self.quantity = 1
class Trade():
def __init__(self, direction, quantity, price):
self.direction = direction
self.quantity = quantity
self.price = price
self.i = 0
def __iter__(self):
return self
def next(self):
if self.i < self.quantity:
i = self.i
self.i += 1
return i, Fill(self.price)
else:
raise StopIteration()
# create a TradeManager
tm = TradeManager()
# generate some buys
a = [i for i in tm.execute('Buy', 75, 25.10)]
a = [i for i in tm.execute('Buy', 50, 25.12)]
# generate sell
pnl = np.cumsum(tm.execute_with_total_pnl('Sell', 100, 25.22))
# how much did we make
print 'total pnl', pnl[-1:]
# try something more involved.
tm = TradeManager()
pnl_ending = []
# run n simulations
for step in range(0,50):
a = [i for i in tm.execute('Buy', 75000, 25)]
pnl = np.cumsum([tm.execute_with_total_pnl('Sell', quantity, random.uniform(min_sell_price, max_sell_price)) \
for quantity in [random.randint(0,max_sell_quentity) \
for i in range(0,number_of_sell_trades,1)]])
plot(pnl)
pnl_ending.append(pnl[-1:][0])
print 'step', step, 'pnl', pnl[-1:][0], 'avg. pnl', np.mean(pnl_ending), 'diff to mean', pnl[-1:][0]-np.mean(pnl_ending)
print 'avg, total pnl', np.mean(pnl_ending) #pnl[-1:][0]
show()
# bin the results
hist(pnl_ending, 25)
grid(True)
show()
# could lookat fitting and var.
|
Buy 75 25.1 position size 0 Buy 50 25.12 position size 75 Sell 100 25.22 position size 125 Sell 100 25.22 position size 125 total pnl [-11.5]