2D Fluid Simulation using FHP LGCA (Lattice Gas Cellular Automata)
Simulates fluid flow in a circular channel.
It works really slow but I think it can be a lot faster if it modified for NumPy and possibly Py2Exe.
But my main goal was to provide easy to understand code (not performance) anyway.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | # 2D Fluid Simulation using FHP LGCA (Lattice Gas Cellular Automata)
# Simulates fluid flow in a circular channel.
# Particles go out from right side and enter back from left.
# Reference:
# Lattice Gas Cellular Automata and Lattice Boltzmann Models by Wolf-Gladrow
# FB - 20140818
import math
import random
from PIL import Image
imgx = 512; imgy = 512 # image size
image = Image.new("RGB", (imgx, imgy))
pixels = image.load()
# simulation parameters:
tilesX = 32
tilesY = 32
n = 8 # coarse graining tile size is n by n
timeSteps = 300
nodesX = tilesX * n
nodesY = tilesY * n
nodes = [[[0 for x in range(nodesX)] for y in range(nodesY)] for z in range(6)]
obstacle = [[0 for x in range(nodesX)] for y in range(nodesY)]
# insert a square obstacle in the middle
for y in range(nodesY / 4):
for x in range(nodesX / 4):
obstacle[y + nodesY / 2 - nodesY / 8][x + nodesX / 2 - nodesX / 8] = 1
# fill-up with fluid flowing towards right
for y in range(1, nodesY - 1): # do not include top/bottom walls
for x in range(nodesX):
if obstacle[y][x] != 1:
nodes[0][y][x] = 1
for t in range(timeSteps): # run the simulation
# HANDLE COLLISIONS
# collisions at non-boundary nodes
for y in range(1, nodesY - 1): # do not include top/bottom walls
for x in range(nodesX):
if obstacle[y][x] != 1:
cell = [nodes[z][y][x] for z in range(6)]
numParticles = sum(cell)
# only 2 or 3 symmetric particle collisions implemented here
if numParticles == 3:
if cell[0] == cell[2] and cell[2] == cell[4]:
# invert the cell contents
for z in range(6):
nodes[z][y][x] = 1 - cell[z]
elif numParticles == 2:
# find the cell of one of the particles
p = cell.index(1)
# its diametric opposite must occupied as well
if p > 2:
pass
elif cell[p + 3] == 0:
pass
else:
# randomly rotate the particle pair clockwise or
# counterclockwise
if random.randint(0, 1) == 0: # counterclockwise
nodes[0][y][x] = cell[5]
nodes[1][y][x] = cell[0]
nodes[2][y][x] = cell[1]
nodes[3][y][x] = cell[2]
nodes[4][y][x] = cell[3]
nodes[5][y][x] = cell[4]
else: # clockwise
nodes[0][y][x] = cell[1]
nodes[1][y][x] = cell[2]
nodes[2][y][x] = cell[3]
nodes[3][y][x] = cell[4]
nodes[4][y][x] = cell[5]
nodes[5][y][x] = cell[0]
# collisions along top/bottom walls (no-slip)
for x in range(nodesX):
cell = [nodes[z][0][x] for z in range(6)]
nodes[0][0][x] = cell[3]
nodes[1][0][x] = cell[4]
nodes[2][0][x] = cell[5]
nodes[3][0][x] = cell[0]
nodes[4][0][x] = cell[1]
nodes[5][0][x] = cell[2]
cell = [nodes[z][nodesY - 1][x] for z in range(6)]
nodes[0][nodesY - 1][x] = cell[3]
nodes[1][nodesY - 1][x] = cell[4]
nodes[2][nodesY - 1][x] = cell[5]
nodes[3][nodesY - 1][x] = cell[0]
nodes[4][nodesY - 1][x] = cell[1]
nodes[5][nodesY - 1][x] = cell[2]
# collisions at obstacle points (no-slip)
for y in range(nodesY):
for x in range(nodesX):
if obstacle[y][x] == 1:
cell = [nodes[z][y][x] for z in range(6)]
nodes[0][y][x] = cell[3]
nodes[1][y][x] = cell[4]
nodes[2][y][x] = cell[5]
nodes[3][y][x] = cell[0]
nodes[4][y][x] = cell[1]
nodes[5][y][x] = cell[2]
# HANDLE MOVEMENTS
nodesNew = [[[0 for x in range(nodesX)] for y in range(nodesY)] for z in range(6)]
for y in range(nodesY):
for x in range(nodesX):
cell = [nodes[z][y][x] for z in range(6)]
# propagation in the 0-direction
neighbor_y = y
if x == nodesX - 1:
neighbor_x = 0
else:
neighbor_x = x + 1
nodesNew[0][neighbor_y][neighbor_x] = cell[0]
# propagation in the 1-direction
if y != nodesY - 1:
neighbor_y = y + 1
if y % 2 == 1:
if x == nodesX - 1:
neighbor_x = 1
else:
neighbor_x = x + 1
else:
neighbor_x = x
nodesNew[1][neighbor_y][neighbor_x] = cell[1]
# propagation in the 2-direction
if y != nodesY - 1:
neighbor_y = y + 1
if y % 2 == 0:
if x == 0:
neighbor_x = nodesX - 1
else:
neighbor_x = x - 1
else:
neighbor_x = x
nodesNew[2][neighbor_y][neighbor_x] = cell[2]
# propagation in the 3-direction
neighbor_y = y
if x == 0:
neighbor_x = nodesX - 1
else:
neighbor_x = x - 1
nodesNew[3][neighbor_y][neighbor_x] = cell[3]
# propagation in the 4-direction
if y != 0:
neighbor_y = y - 1
if y % 2 == 0:
if x == 0:
neighbor_x = nodesX - 1
else:
neighbor_x = x - 1
else:
neighbor_x = x
nodesNew[4][neighbor_y][neighbor_x] = cell[4]
# propagation in the 5-direction
if y != 0:
neighbor_y = y - 1
if y % 2 == 1:
if x == nodesX - 1:
neighbor_x = 0
else:
neighbor_x = x + 1
else:
neighbor_x = x
nodesNew[5][neighbor_y][neighbor_x] = cell[5]
nodes = nodesNew
print '%' + str(100 * t / timeSteps) # show progress
# Create an image from the final state
# Calculate average velocity vectors for tiles
aveVelocityVectorMag = [[0.0 for x in range(tilesX)] for y in range(tilesY)]
aveVelocityVectorAng = [[0.0 for x in range(tilesX)] for y in range(tilesY)]
pi2 = math.pi * 2.0
dx = [math.cos(i * pi2 / 6.0) for i in range(6)]
dy = [math.sin(i * pi2 / 6.0) for i in range(6)]
for ty in range(tilesY):
for tx in range(tilesX):
vx = 0.0
vy = 0.0
for cy in range(n):
for cx in range(n):
for z in range(6):
if nodes[z][ty * n + cy][tx * n + cx] == 1 \
and obstacle[ty * n + cy][tx * n + cx] == 0:
vx += dx[z]
vy += dy[z]
aveVelocityVectorMag[ty][tx] = math.hypot(vx, vy) / n ** 2.0
aveVelocityVectorAng[ty][tx] = (math.atan2(vy, vx) + pi2) % pi2
for ky in range(imgy):
iy = nodesY * ky / imgy
jy = tilesY * ky / imgy
for kx in range(imgx):
ix = nodesX * kx / imgx
jx = tilesX * kx / imgx
if obstacle[iy][ix] == 1: # paint the obstacle(s)
red = 0
grn = 0
blu = 255
else: # use vector magnitude and angle for coloring
aveVelVecMag = aveVelocityVectorMag[jy][jx]
aveVelVecAng = aveVelocityVectorAng[jy][jx]
red = int(aveVelVecMag * 255)
grn = int(aveVelVecAng / pi2 * 255)
blu = 0
pixels[kx, ky] = (red, grn, blu)
image.save("FHP_LGCA_2DFluidSim.png", "PNG")
|
File "C:/Users/POS/Documents/Python Scripts/2D FLUID SIMULATION USING FHP LGCA.py", line 32, in <module> for y in range(nodesY / 4):
TypeError: 'float' object cannot be interpreted as an integer
I got an error as above. Please advice me!!
I just downloaded the code and run it no problem. I am guessing you maybe using Python 3.x. I had written this code using Python 2.7.x. They are not fully compatible versions. Also you would need to get and install PIL library for it to work.