Welcome, guest | Sign In | My Account | Store | Cart

Implementation of the A-star Pathfinding algorithm in Python, using Binary heap to sort the open list

Python, 78 lines
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Author: Christian Careaga (christian.careaga7@gmail.com)
# A* Pathfinding in Python (2.7)
# Please give credit if used

import numpy
from heapq import *


def heuristic(a, b):
    return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2

def astar(array, start, goal):

    neighbors = [(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1),(-1,1),(-1,-1)]

    close_set = set()
    came_from = {}
    gscore = {start:0}
    fscore = {start:heuristic(start, goal)}
    oheap = []

    heappush(oheap, (fscore[start], start))
    
    while oheap:

        current = heappop(oheap)[1]

        if current == goal:
            data = []
            while current in came_from:
                data.append(current)
                current = came_from[current]
            return data

        close_set.add(current)
        for i, j in neighbors:
            neighbor = current[0] + i, current[1] + j            
            tentative_g_score = gscore[current] + heuristic(current, neighbor)
            if 0 <= neighbor[0] < array.shape[0]:
                if 0 <= neighbor[1] < array.shape[1]:                
                    if array[neighbor[0]][neighbor[1]] == 1:
                        continue
                else:
                    # array bound y walls
                    continue
            else:
                # array bound x walls
                continue
                
            if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0):
                continue
                
            if  tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for i in oheap]:
                came_from[neighbor] = current
                gscore[neighbor] = tentative_g_score
                fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
                heappush(oheap, (fscore[neighbor], neighbor))
                
    return False

'''Here is an example of using my algo with a numpy array,
   astar(array, start, destination)
   astar function returns a list of points (shortest path)'''

nmap = numpy.array([
    [0,0,0,0,0,0,0,0,0,0,0,0,0,0],
    [1,1,1,1,1,1,1,1,1,1,1,1,0,1],
    [0,0,0,0,0,0,0,0,0,0,0,0,0,0],
    [1,0,1,1,1,1,1,1,1,1,1,1,1,1],
    [0,0,0,0,0,0,0,0,0,0,0,0,0,0],
    [1,1,1,1,1,1,1,1,1,1,1,1,0,1],
    [0,0,0,0,0,0,0,0,0,0,0,0,0,0],
    [1,0,1,1,1,1,1,1,1,1,1,1,1,1],
    [0,0,0,0,0,0,0,0,0,0,0,0,0,0],
    [1,1,1,1,1,1,1,1,1,1,1,1,0,1],
    [0,0,0,0,0,0,0,0,0,0,0,0,0,0]])
    
print astar(nmap, (0,0), (10,13))

This can be used in game dev for an AI to find the shortest path from A to B while avoiding obstacles

Binary heap used to keep the open list in order