Welcome, guest | Sign In | My Account | Store | Cart

http://www.freeopen.org/?p=85 The aim of this book is to present and describe in detail the algorithms to extract the knowledge hidden inside data using Python language, which allows us to read and easily understand the nature and the characteristics of the rules of the computing utilized, as opposed to what happens in commercial applications, which are available only in the form of running codes, which remain impossible to modify.

The algorithms of computing contained within the book are minutely described, documented and available in the Python source format, and serve to extract the hidden knowledge within the data whether they are textual or numerical kinds. There are also various examples of usage, underlining the characteristics, method of execution and providing comments on the obtained results.

Python, 1045 lines
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
# -*- coding: utf-8 -*-
############################################################################### 
# KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM)                 # 
# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)                 # 
# Language used: PYTHON                               .                       # 
############################################################################### 
import os
import random
import copy
import datetime

def mean(x):     	# mean
  n = len(x)
  mean = sum(x) / n
  return mean

def sd(x):		# standard deviattion
  n = len(x)
  mean = sum(x) / n
  sd = (sum((x-mean)**2 for x in x) / n) ** 0.5
  return sd

def is_number(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

class ndim:             # from 3D array to flat array
    def __init__(self,x,y,z,d):
        self.dimensions=[x,y,z]
        self.numdimensions=d
        self.gridsize=x*y*z

    def getcellindex(self, location):
        cindex = 0
        cdrop = self.gridsize
        for index in xrange(self.numdimensions):
            cdrop /= self.dimensions[index]
            cindex += cdrop * location[index]
        return cindex

    def getlocation(self, cellindex):
        res = []
        for size in reversed(self.dimensions):
            res.append(cellindex % size)
            cellindex /= size
        return res[::-1]

""" how to use ndim class
n=ndim(4,4,5,3)
print n.getcellindex((0,0,0))
print n.getcellindex((0,0,1))
print n.getcellindex((0,1,0))
print n.getcellindex((1,0,0))

print n.getlocation(20)
print n.getlocation(5)
print n.getlocation(1)
print n.getlocation(0)
"""

print("###############################################################################")
print("# KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM)                 #")
print("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)                 #")
print("# Language used: PYTHON                                                       #")
print("###############################################################################") 

# input and run parameters
error = 0

while True:
  arch_input = raw_input('InputFile                              : ')
  if not os.path.isfile(arch_input):
    print("Oops! File does not exist. Try again... or CTR/C to exit")     
  else:
    break

while True:
  try:
    num_gruppi = int(raw_input('Number of Groups (3 - 20)              : '))
  except ValueError:
    print("Oops!  That was no valid number.  Try again...")
  else:
    if(num_gruppi < 3):
      print("Oops! Number of Groups too low. Try again...")
    else:
      if(num_gruppi > 20):
        print("Oops! Number of Groups too big. Try again...")
      else:
        break

while True:
  normaliz   = raw_input('Normalization(Max, Std, None)          : ')
  normaliz   = normaliz.upper()
  normaliz   = normaliz[0]
  if(normaliz <> 'M' and normaliz <> 'S' and normaliz <> 'N'):
    print("Oops! Input M, S or N. Try again...")
  else:
    break

while True:
  try:
    max_alpha   = float(raw_input('Start value of alpha (1.8 - 0.9)       : '))
  except ValueError:
    print("Oops!  That was no valid number.  Try again...")
  else:
    if(max_alpha > 1.8):
      print("Oops! Start value of alpha too big. Try again...")
    else:
      if(max_alpha < 0.9):
        print("Oops! Start value of alpha too low. Try again...")
      else:
        break

while True:
  try:
    min_alpha  = float(raw_input('End value of alpha (0.5 - 0.0001)      : '))
  except ValueError:
    print("Oops!  That was no valid number.  Try again...")
  else:
    if(min_alpha > 0.5):
      print("Oops! alpha too big. Try again...")
    else:
      if(min_alpha < 0.0001):
        print("Oops! alpha too low. Try again...")
      else:
        break

while True:
  try:
    step_alpha  = float(raw_input('Decreasing step of alpha (0.1 - 0.001) : '))
  except ValueError:
    print("Oops!  That was no valid number.  Try again...")
  else:
    if(step_alpha > 0.1):
      print("Oops! Decreasing step of alpha too big. Try again...")
    else:
      if(step_alpha < 0.001):
        print("Oops! Decreasing step of alpha too low. Try again...")
      else:
        break


file_input   = arch_input 
gruppi_num   = num_gruppi
tipo_norm    = normaliz 
alpha_min    = min_alpha 
alpha_max    = max_alpha
alpha_step   = step_alpha

# outputs files
file_input   = arch_input
tipo_norm    = normaliz
gruppi_num   = num_gruppi
nome_input   = file_input.split(".") 
arch_output  = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_out.txt" 
arch_outsrt  = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_outsrt.txt" 
arch_sort    = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_sort.txt" 
arch_catal   = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_catal.txt" 
arch_medsd   = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_medsd.txt" 
arch_cv      = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_cv.txt" 
arch_grid    = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_grid.txt" 
arch_log     = nome_input[0] + "_" + tipo_norm + "_g" + str(gruppi_num) + "_log.txt" 

# start time
t0 = datetime.datetime.now()

# read input file 
arr_r    = [] 
arr_orig = [] 
arr_c    = [] 
mtchx    = [] 
mtchy    = [] 
txt_col  = [] 
xnomi    = [] 

# the numbers of variables / columns in all record must be the same 
n_rows = 0 
n_cols = 0 
err_cols = 0 
index = 0 
for line in open(file_input).readlines():
  linea = line.split()
  if(index == 0):
    xnomi.append(linea)
    n_cols = len(linea)
  else:
    arr_r.append(linea)
    if(len(linea) != n_cols):
      err_cols = 1
      print("Different numbers of variables / columns in the record " + str(index)
        + " cols " + str(len(linea))) 
  index += 1
if(err_cols == 1):
  print("File " + file_input + " contains errors. Exit ")
  quit()
index = 0
while index < len(arr_r):
  linea = arr_r[index]
  index_c = 0
  while index_c < len(linea):
    if linea[index_c].isdigit():
      linea[index_c] = float(linea[index_c])
    index_c += 1
  arr_r[index] = linea 
  index += 1
arr_orig = copy.deepcopy(arr_r)        # original input file
testata_cat = copy.deepcopy(xnomi[0])  # original header row

# finding columns containing strings and columns containing numbers
testata = xnomi[0]
testata_orig = copy.deepcopy(xnomi[0])
n_cols = len(testata) - 1
n_rows = len(arr_r)
ind_c  = 1
err_type = 0
while ind_c < len(testata):
  ind_r    = 1
  tipo_num = 0 
  tipo_txt = 0 
  while ind_r < len(arr_r):

    arr_c = arr_r[ind_r]

    if is_number(arr_c[ind_c]):
      tipo_num = 1
    else:
      tipo_txt = 1

    ind_r += 1

  if tipo_num == 1 and tipo_txt == 1:
    print "The columns / variables " + testata[ind_c] + " contains both strings and numbers." 
    print arr_c
    err_type = 1 
  ind_c += 1
if err_type == 1:
  print "Oops! The columns / variables contains both strings and numbers. Exit. " 
  quit()

index_c = 1 
while index_c <= n_cols:
  txt_col = [] 
  index = 0 
  while index < len(arr_r):
    arr_c = arr_r[index] 
    if(isinstance(arr_c[index_c],str)):
      txt_col.append(arr_c[index_c]) 
    index += 1 
  set_txt_col = set(txt_col)             # remove duplicates 
  txt_col = list(set(set_txt_col))
  txt_col.sort()
  
  # from strings to numbers 
  if(len(txt_col) > 0): 
    if(len(txt_col) > 1): 
      passo1 = 1.0 / (len(txt_col) - 1) 
    else:
      passo1 = 0.0
    index = 0
    while index < len(arr_r): 
      arr_c = arr_r[index] 
      campo1 = arr_c[index_c] 
      indice1 = txt_col.index(campo1) 
      if(len(txt_col) == 1):  # same values in the column
        val_num1 = float(1) 
      else: 
        val_num1 = float(passo1 * indice1)
      arr_c[index_c] = val_num1 + 0.00000001   # to avoid zero values in means
                                               # (to prevent zero divide in CV)
      index += 1 
  index_c += 1 

# means, max & std 
xmeans = [] 
xmaxs  = [] 
xmins  = []            ### aggiunto Roberto 4/03/2012
xsds   = [] 
xcv    = [] 
index_c = 0
while index_c <= n_cols:
  xmeans.append(0.0) 
  xmaxs.append(-9999999999999999.9) 
  xmins.append(9999999999999999.9)	### aggiunto Roberto 4/03/2012
  xsds.append(0.0) 
  xcv.append(0.0)
  index_c += 1 

# means & max
index = 0 
while index < n_rows:
  arr_c = arr_r[index] 
  index_c = 1 
  while index_c <= n_cols:
    xmeans[index_c] += arr_c[index_c] 
    if(arr_c[index_c] > xmaxs[index_c]):
      xmaxs[index_c] = arr_c[index_c] 
    index_c += 1 
  index += 1 
index_c = 1 
while index_c <= n_cols:
  xmeans[index_c] = xmeans[index_c] / n_rows
  index_c += 1 

# std
index = 0 
while index < n_rows:
  arr_c = arr_r[index] 
  index_c = 1 
  while index_c <= n_cols:
    xsds[index_c] += (arr_c[index_c] - xmeans[index_c])**2 
    index_c += 1 
  index += 1 
index_c = 1 

while index_c <= n_cols:
  xsds[index_c] = (xsds[index_c] / (n_cols - 1)) ** 0.5 
  index_c += 1 

# Means, Max, Std, CV output file
medsd_file = open(arch_medsd, 'w')
  
# columns names
medsd_file.write('%s %s ' % ('Function' , "\t"))
index_c = 1 
while index_c <= n_cols:
  medsd_file.write('%s %s ' % (testata[index_c], "\t"))
  index_c += 1
medsd_file.write('%s' % ('\n'))

# means
medsd_file.write('%s %s ' % ('Mean' , "\t"))
index_c = 1 
while index_c <= n_cols:
  valore = str(xmeans[index_c]) 
  valore = valore[0:6] 
  medsd_file.write('%s %s ' % (valore, "\t")) 
  index_c += 1 
medsd_file.write('%s' % ('\n'))

# max
medsd_file.write('%s %s ' % ('Max' , "\t"))
index_c = 1 
while index_c <= n_cols:
  valore = str(xmaxs[index_c]) 
  valore = valore[0:6] 
  medsd_file.write('%s %s ' % (valore, "\t")) 
  index_c += 1 
medsd_file.write('%s' % ('\n'))

# std
medsd_file.write('%s %s ' % ('Std' , "\t"))
index_c = 1 
while index_c <= n_cols:
  valore = str(xsds[index_c]) 
  valore = valore[0:6] 
  medsd_file.write('%s %s ' % (valore, "\t")) 
  index_c += 1 
medsd_file.write('%s' % ('\n'))

# CV 
medsd_file.write('%s %s ' % ('CV' , "\t"))
index_c = 1 
med_cv_gen = 0.0 		# cv average of all columns / variables
while index_c <= n_cols:
  if xmeans[index_c] == 0: 
    media1 = 0.000001 
  else:
    media1 = xmeans[index_c] 
  xcv[index_c] = xsds[index_c] / abs(media1) 
  valore = str(xcv[index_c])
  med_cv_gen += xcv[index_c]
  valore = valore[0:6] 
  medsd_file.write('%s %s ' % (valore, "\t")) 
  index_c += 1 
med_cv_gen = med_cv_gen / n_cols
str_med_cv_gen = str(med_cv_gen)
str_med_cv_gen = str_med_cv_gen[0:6]
medsd_file.write('%s' % ('\n'))
medsd_file.close()

# input standardization

# standardization on max

if tipo_norm == 'M':
  index = 0
  while index < n_rows:
    arr_c = arr_r[index] 
    index_c = 1 
    while index_c <= n_cols:    ## aggiornare anche kb_cla.py
      if xmaxs[index_c] == 0.0:
        xmaxs[index_c] = 0.00001 
      arr_c[index_c] = arr_c[index_c] / xmaxs[index_c] 
      index_c += 1 
    index += 1 

# standardization on std

if tipo_norm == 'S':
  index = 0
  while index < n_rows: 
    arr_c = arr_r[index] 
    index_c = 1 
    while index_c <= n_cols:    
      if xsds[index_c] == 0.0:
        xsds[index_c] = 0.00001 
      arr_c[index_c] = (arr_c[index_c] - xmeans[index_c]) / xsds[index_c]
      if arr_c[index_c] < xmins[index_c]:	### aggiunto Roberto 4/03/2012
        xmins[index_c] = arr_c[index_c]       	### aggiunto Roberto 4/03/2012
      index_c += 1 
    index += 1 
  # aggiungo xmins per eliminare i valori negativi (aggiunto da Roberto 4/03/2012)
  index = 0
  while index < n_rows: 
    arr_c = arr_r[index] 
    index_c = 1 
    while index_c <= n_cols:    
      arr_c[index_c] = arr_c[index_c] - xmins[index_c]
      print arr_c[index_c]
      index_c += 1 
    index += 1 
  # fine aggiunta da Roberto 4/03/2012

# start of kohonen algorithm 

# min and max vectors

vmaxs = []
vmins = []

index_c = 0

while index_c <= n_cols:
  vmaxs.append(-10000000000000.0) 
  vmins.append( 10000000000000.0) 
  index_c += 1 

# columns min & max 
index = 0
while index < n_rows:
  arr_c = arr_r[index] 
  index_c = 1 
  while index_c <= n_cols:
    if arr_c[index_c] > vmaxs[index_c]:
      vmaxs[index_c] = arr_c[index_c] 
    if arr_c[index_c] < vmins[index_c]:
      vmins[index_c] = arr_c[index_c] 
    index_c += 1 
  index += 1 

# run parameters and temp arrays
  
n = n_rows
m = n_cols
nx = gruppi_num 
ny = gruppi_num 
ix = 950041                         # integer as random seed
nsteps = int(10000 * nx * ny)       # number of steps
nepoks = int(nsteps / n ** 0.5)     # number of epochs
unit_calc = int(n * m * nx * ny)    # running units
passo = int(5000 / n)               # step of visualization on monitor
rmax = nx - 1
rmin = 1.0 

if passo < 1:
  passo = 1 
grid = []			    # training grid
index = 0
while index < nx * ny * m:
  grid.append(0.0)
  index += 1
n=ndim(nx,ny,m,3)
random.seed(ix)	       		    # initial value of random seed to obtain the same sequences in new runs
index = 0 
while index < nx: 
  index_c = 0 
  while index_c < ny:
    index_k = 0 
    while index_k < m: 
      ig = n.getcellindex((index,index_c,index_k))
      grid[ig] = random.random()
      index_k += 1 
    index_c += 1 
  index += 1 
gridp = copy.deepcopy(grid)     # initial previous grid = current grid 
gridm = copy.deepcopy(grid)     # initial min grid = current grid 

# for each record in each epoch 
iter 	  = 0 
discrea   = 1000000000000.0 	# current error
discrep   = 0.0 		# previous error
if nepoks < 20: 
  nepoks  = 20 			# min epochs = 20
nepokx    = 0
min_epok  = 0          		# epoch with min error
min_err   = 1000000000.0    	# min error
alpha     = float(alpha_max)   	# initial value of alpha parameter
ir        = 0.0                 # initial value of ir parameter ir
ne        = 1 

print " " 
print 'Record ' + str(n_rows) + ' Columns ' + str(n_cols)

# main loop
try:
  while ne <= nepoks: 
    if (ne % passo == 0):  # print running message when modulo division = zero
      min_err_txt = "%14.5f" % min_err    # format 8 integers and 3 decimals 
      alpha_txt  = "%12.5f" % alpha       # format 6 integers and 5 decimals 
      print ('Epoch ' + str(ne) + '   min err ' + min_err_txt + '   min epoch ' + 
          str(min_epok - 1) + "   alpha " + alpha_txt)
    if min_err < 1000000000.0: 
      nepokx += 1 
    if min_err > discrea and discrep > discrea and discrea > 0.0: 
      min_epok = ne               # current epoch (min) 
      min_err = discrea 
      # copy current grid to min grid
      gridm = copy.deepcopy(grid)       
      min_err_txt = "%12.3f" % min_err    # format 8 integers and 3 decimals 
      alpha_txt  = "%12.5f" % alpha       # format 6 integer and  5 decimals 
      print ('**** Epoch ' + str(ne - 1) + '       WITH MIN ERROR ' + min_err_txt + 
         "   alpha " + alpha_txt)
      
    # cheking the current value of alpha 
    if alpha > alpha_min:
      discrea = discrep 
      discrep = 0.0 
      # copy current grid to previous grid
      gridp = copy.deepcopy(grid)       
  
      # from the starting row to the ending row
      i = 0 
      while i < n_rows:
        iter += 1 
        # find the best grid coefficient
        ihit = 0 
        jhit = 0 
        dhit = 100000.0 
        igx = 0
        igy = 0
        while igx < nx: 
          igy = 0
          while igy < ny: 
            d = 0.0 
            neff = 0 
            k = 0
            arr_c = arr_r[i] 
            while k < m:   # update the sum of squared deviation of input 
                           # value from the grid coefficient
              ig = n.getcellindex((igx,igy,k))
              d = d + (arr_c[k+1] - grid[ig]) ** 2 
              k += 1 
            d = d / float(m)
            #  d = d / m 
            if d < dhit:
              dhit = d 
              ihit = int(igx)
              jhit = int(igy)
            igy += 1 
          igx += 1 
        # update iteration error
        discrep = discrep + dhit 
        # now we have the coordinates of the best grid coefficient
        ir = max(rmax * float(1001 - iter) / 1000.0 + 0.9999999999 , 1) 
        ir = int(ir) 
        # new alpha value to increase the radius of groups proximity 
        alpha = max(alpha_max * float(1 - ne * alpha_step) , alpha_min)
        # update the grid coefficients applying alpha parameter
        inn0 = int(ihit) - int(ir) 
        inn9 = int(ihit) + int(ir)
        jnn0 = int(jhit) - int(ir)
        jnn9 = int(jhit) + int(ir)
        while inn0 <= inn9: 
          jnn0 = int(jhit) - int(ir)
          while jnn0 <= jnn9:
            if not (inn0 < 0 or inn0 >= nx):
              if not (jnn0 < 0 or jnn0 >= ny): 
                arr_c = arr_r[i] 
                k = 0 
                while k < m:
                  ig = n.getcellindex((inn0,jnn0,k))
                  grid[ig] += alpha * (arr_c[k+1] - grid[ig])
                  k += 1 
            jnn0 += 1 
          inn0 += 1 
        i += 1 
    else: 
      print
      print "Min alpha reached " 
      print
      break   
    ne += 1 
except KeyboardInterrupt:
  print
  print "KeyboardInterrupt (Ctrl/C) " 
  print
  pass

# computing results
# grid = grid min 
grid = copy.deepcopy(gridm)       

# write min grid file 
arch_grid_file = open(arch_grid, 'w')
ii = 0 
while ii < nx:
  j = 0
  while j < ny:
    k = 0
    while k < m:
      ig = n.getcellindex((ii,j,k))
      arch_grid_file.write('%6i %s %.6i %s %.6i %s %14.7f %s' % (ii,' ', j ,' ', k,' ', grid[ig], "\n"))
      k += 1
    j += 1
  ii += 1
arch_grid_file.close()

# catalog input by min grid
ii = 0
while ii < n_rows: 
  ihit = 0 
  jhit = 0 
  dhit = 100000.0 
  # from 1 to numbers of groups
  ir = 0
  while ir < nx:         # from 1 to numbers of groups 
    jc = 0
    while jc < ny:       # from 1 to numbers of groups 
      d = 0.0 
      neff = 0 
      k = 0
      while k < n_cols:  # update the sum of squared deviation of input 
                         # value from the grid coefficient
        arr_c = arr_r[ii] 
        ig = n.getcellindex((ir,jc,k))
        d = d + (arr_c[k+1] - grid[ig]) ** 2 
        k += 1 
      d = d / m 
      if d < dhit:       # save the coordinates of the best coefficient 
        dhit = d 
        ihit = ir 
        jhit = jc 
      jc += 1 
    ir += 1 
  mtchx.append(ihit)
  mtchy.append(jhit) 
  ii += 1 

# write arch_catal file 
arch_catal_file = open(arch_catal, 'w')
ii = 0 
while ii < n_rows: 
  arch_catal_file.write("%.6i %s %.6i %s %.6i %s" % (ii, ' ', mtchx[ii], ' ', mtchy[ii], "\n")) 
  ii += 1 
arch_catal_file.close()

# matrix of statistics 
arr_cv   = []   	       # CV array of the Groups and Total
arr_med  = []      	       # means array of the Groups
riga_cv  = []          	       # CV row in arr_cv 
arr_col  = []          	       # group temporary array
arr_grsg = []         	       # input data array (normalized)
arr_grsg_c = []                # copy of arr_grsg (for file out sort) 

# input matrix sort in group sequence
ii = 0
ix = 0
while ii < n_rows: 
  ix += 1
  gr1 = str(mtchx[ii])
  if mtchx[ii] < 10:
    gr1 = '0' + str(mtchx[ii])
  sg1 = str(mtchy[ii])
  if mtchy[ii] < 10: 
    sg1 = '0' + str(mtchy[ii])
  riga_norm = arr_r[ii]
  im = 0
  riga_norm1 = []
  while im <= m: 
    riga_norm1.append(str(riga_norm[im]))
    im += 1
  riga_norm2 = " ".join(riga_norm1)  
  gr_sg_txt = "G_" + gr1 + "_" + sg1 + " " + str(ix) + " " + riga_norm2
  arr_grsg.append(gr_sg_txt) 
  ii += 1 
arr_grsg.sort()
ii = 0 
while ii < n_rows:
  arr_grsg_c.append(arr_grsg[ii]) 
  ii += 1 

# setup of arr_cv matrix 
num_gr = 0 
gruppo0 = "" 
ir = 0
while ir < n_rows:
  grsg_key = arr_grsg_c[ir].split()
  if not grsg_key[0] == gruppo0:
    gruppo0 = grsg_key[0]
    num_gr +=1 
    ic = 1 
    riga1 = [] 
    riga1.append(grsg_key[0]) 
    while ic <= m + 2:          # adding new columns for row mean and  n° of records
      riga1.append(0.0) 
      ic += 1 
    arr_cv.append(riga1)        # cv row 
  ir += 1 
riga1 = []
riga1.append("*Means*") 	# adding new row for cv mean
ic = 1
while ic <= m + 2:          	# adding new column for row mean and n° of records
  riga1.append(0.0) 
  ic += 1 
arr_cv.append(riga1)

def found(x):
  ir = 0
  while ir < len(arr_cv):
    linea_cv = arr_cv[ir]
    key_cv = linea_cv[0]
    if key_cv == x:
      return ir
    ir += 1

ir  = 0
irx = len(arr_grsg_c)
ic  = 3
linea_cv = arr_cv[0]
icx = len(linea_cv)
val_col = []

while ic < icx:
  ir = 0
  gruppo  = ""
  val_col = []
  while ir < irx:
    linea = arr_grsg_c[ir].split()
    if linea[0] == gruppo or gruppo == "":
      gruppo = linea[0] 
      val_col.append(float(linea[ic]))
    else:
      i_gruppo = found(gruppo)
      linea_cv = arr_cv[i_gruppo]
      media_v = abs(mean(val_col))
      if media_v == 0.0:
         media_v = 0.0000000001
      std_v = sd(val_col)
      cv_v  = std_v / media_v
      linea_cv[ic-2] = cv_v                      # cv value
      linea_cv[len(linea_cv)-1] = len(val_col)   # number of records
      val_col = []
      val_col.append(float(linea[ic]))
      gruppo = linea[0]
    ir += 1
  i_gruppo = found(gruppo)
  linea_cv = arr_cv[i_gruppo]
  media_v = abs(mean(val_col))
  if media_v == 0.0:
    media_v = 0.0000000001
  std_v = sd(val_col)
  cv_v  = std_v / media_v
  linea_cv[ic-2] = cv_v                          # cv value
  linea_cv[len(linea_cv)-1] = len(val_col)       # number of records
  ic += 1
ir  = 0
irx = len(arr_cv)
linea_cv = arr_cv[0]
icx = len(linea_cv) - 2
ic  = 1
num_rec1 = 0

while ir < irx:                                  # rows mean
  media_riga = 0.0
  ic = 1
  num_col1 = 0 
  linea_cv = arr_cv[ir]
  while ic < icx:
    media_riga += float(linea_cv[ic])
    num_col1 += 1
    ic += 1
  linea_cv[icx] = media_riga / num_col1
  num_rec1 += linea_cv[icx + 1]
  ir += 1
ir  = 0
ic  = 1

while ic < icx:                  # weighted mean of columns
  media_col = 0.0
  ir = 0
  num_rec1 = 0 
  while ir < irx - 1:
    linea_cv = arr_cv[ir]
    media_col = media_col + linea_cv[ic] * linea_cv[icx+1]  # linea_cv[icx+1] = number of records
    num_rec1 = num_rec1 + linea_cv[icx+1]
    ir += 1
  linea_cv = arr_cv[irx - 1]
  linea_cv[ic] = media_col / num_rec1
  ic += 1

# updating mean of the row
linea_cv = arr_cv[irx - 1]
linea_means = linea_cv[1:icx]
media_riga  = mean(linea_means)
linea_cv[icx] = media_riga        # Total mean
linea_cv[icx + 1] = num_rec1      # n° of records
cv_media_gen_after = str(media_riga)
cv_media_gen_after = cv_media_gen_after[0:6]  

# write cv  file 
testata_cv = testata
testata_cv[0] = "*Groups*"
testata_cv.append("*Mean*")
testata_cv.append("N_recs")
arch_cv_file = open(arch_cv, 'w')
ic = 0
while ic <= icx + 1:
  arch_cv_file.write('%s %s ' % (testata_cv[ic], " "*(9-len(testata_cv[ic]))))
  ic += 1
arch_cv_file.write('%s' % ('\n'))
ir = 0 
while ir < irx:
  ic = 0
  linea_cv = arr_cv[ir]
  while ic <= icx + 1:
    if ic == 0:
      arch_cv_file.write('%s %s ' % (linea_cv[0], "  "))
    else:
      if ic <= icx:
        arch_cv_file.write('%7.4f %s ' % (linea_cv[ic], "  "))
      else:
        arch_cv_file.write('%6i %s ' % (linea_cv[ic], "  "))
    ic += 1
  arch_cv_file.write('%s' % ("\n"))
  ir += 1
ic = 0

media_xcv = mean(xcv[1:icx])

while ic <= icx :   # print CV input (before catalogue)  
  if ic == 0:
    arch_cv_file.write('%s %s ' % ("*CVinp*", "  "))
  else:
    if ic < icx:
      arch_cv_file.write('%7.4f %s ' % (xcv[ic], "  "))
    else:
      arch_cv_file.write('%7.4f %s ' % (media_xcv, "  "))
      arch_cv_file.write('%6i %s ' % (linea_cv[ic+1], "  "))
  ic += 1
arch_cv_file.write('%s' % ("\n"))
#=========istruzioni aggiunte Roberto Bello 29/02/2012======================
#know_index = str(1.0 - float(cv_media_gen_after) / float(str_med_cv_gen))	
#know_index = know_index[0:6]
#arch_cv_file.write('%s %s %s' % ('*KIndex*   ', know_index, '\n'))
#=========fine istruzioni aggiunte da Roberto Bello 29/02/2012==============
arch_cv_file.close()

# writing out catalog file 
testata_cat1 = []
testata_cat1.append("*Group*")
arch_output_file = open(arch_output, 'w')
ic= 0
while ic < icx:
  testata_cat1.append(testata_cat[ic])
  ic += 1
ic= 0
while ic < len(testata_cat1):
  arch_output_file.write('%s %s ' % (testata_cat1[ic], " "*(15-len(testata_cat1[ic]))))
  ic += 1
arch_output_file.write('%s' % ("\n"))
index = 0 
while index < len(arr_orig):
  riga_orig = arr_orig[index]
  ic = 0
  while ic < len(riga_orig):
    if not(isinstance(riga_orig[ic],str)):
      riga_orig[ic] = str(riga_orig[ic])
    ic += 1   
  # place before 0 if gr / sg < 10 
  gr1 = str(mtchx[index])
  if mtchx[index] < 10:
    gr1 = '0' + str(mtchx[index])
  sg1 = str(mtchy[index])
  if mtchy[index] < 10: 
    sg1 = '0' + str(mtchy[index])
  arr_rig0 = "G_" + gr1 + "_" + sg1 + " "*8
  arch_output_file.write('%s ' % (arr_rig0))
  ic= 0
  while ic < len(riga_orig):
    arch_output_file.write('%s %s ' % (riga_orig[ic], " "*(15-len(riga_orig[ic]))))
    ic += 1
  arch_output_file.write('%s' % ("\n"))
  index += 1 
testata_cat1 = []
testata_cat1.append("*Group*")
testata_cat1.append("*RecNum*")
arch_sort_file = open(arch_sort, 'w')
ic= 0
while ic < icx:
  testata_cat1.append(testata_cat[ic])
  ic += 1
ic= 0
while ic < len(testata_cat1):
  arch_sort_file.write('%s %s ' % (testata_cat1[ic], " "*(15-len(testata_cat1[ic]))))
  ic += 1
arch_sort_file.write('%s' % ("\n"))
index = 0 
while index < len(arr_grsg_c):
  riga_grsg = arr_grsg_c[index].split()
  ic = 0
  while ic < len(riga_grsg):
    val_txt = riga_grsg[ic]
    val_txt = val_txt[0:13]
    arch_sort_file.write('%s %s ' % (val_txt, " "*(15-len(val_txt))))
    ic += 1
  if index < len(arr_grsg_c) - 1:
    arch_sort_file.write('%s' % ("\n"))
  index += 1 
arch_sort_file.close()

# writing out catalog and sorted file
arr_outsrt = []
index = 0
while index < len(arr_orig):
  riga_sort = []
  # place before 0 if gr / sg < 10 
  gr1 = str(mtchx[index])
  if mtchx[index] < 10:
    gr1 = '0' + str(mtchx[index])
  sg1 = str(mtchy[index])
  if mtchy[index] < 10: 
    sg1 = '0' + str(mtchy[index])
  riga_sort.append("G_" + gr1 + "_" + sg1)
  ic = 0
  riga_orig = arr_orig[index]
  while ic < len(riga_orig):
    val_riga = riga_orig[ic]
    riga_sort.append(val_riga)
    ic += 1
  arr_outsrt.append(riga_sort)
  index += 1

for line in arr_outsrt:
  line = "".join(line)  

arr_outsrt.sort()

testata_srt = []
testata_srt.append("*Group*")
arch_outsrt_file = open(arch_outsrt, 'w')
ic= 0
while ic < icx:
  testata_srt.append(testata_orig[ic])
  ic += 1
ic= 0
while ic < len(testata_srt):
  arch_outsrt_file.write('%s %s' % (testata_srt[ic], " "*(15-len(testata_srt[ic]))))
  ic += 1
arch_outsrt_file.write('%s' % ("\n"))
index = 0 
key_gruppo = "" 
while index < len(arr_outsrt):
  riga_sort = arr_outsrt[index] 
  index_c = 0 
  while index_c < len(riga_sort):
    if index_c == 0: 
      if riga_sort[0] != key_gruppo:
        # arch_outsrt_file.write('%s ' % ("\n"))
        key_gruppo = riga_sort[0] 
    valore = riga_sort[index_c] 
    arch_outsrt_file.write('%s %s' % (valore, " "*(15-len(valore))))
    index_c += 1 
  if index < len(arr_grsg_c) - 1:
    arch_outsrt_file.write('%s' % ("\n"))
  index += 1 
arch_outsrt_file.close()

print("###############################################################################")
print("# KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM)                 #")
print("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)                 #")
print("# Language used: PYTHON                                                       #")
print("###############################################################################") 

arch_log_file = open(arch_log, 'w')
arch_log_file.write("%s %s" % ("############################################################################", "\n"))
arch_log_file.write("%s %s" % ("# KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM)              #", "\n")) 
arch_log_file.write("%s %s" % ("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)              #", "\n")) 
arch_log_file.write("%s %s" % ("# Language used: PYTHON                     .                              #", "\n")) 
arch_log_file.write("%s %s" % ("############################################################################", "\n")) 
arch_log_file.write("%s %s %s" % ("Input File                                        -> ", file_input, "\n"))
arch_log_file.write("%s %s %s" % ("Numer of Groups (3 - 20)                          -> ", str(gruppi_num), "\n")) 
arch_log_file.write("%s %s %s" % ("Normalization (Max, Std, None)                    -> ", tipo_norm, "\n")) 
arch_log_file.write("%s %s %s" % ("Start Value of alpha (from 1.8 to 0.9)            -> ", str(alpha_max), "\n")) 
arch_log_file.write("%s %s %s" % ("End Value of alpha (from 0.5 to 0.0001)           -> ", str(alpha_min), "\n")) 
arch_log_file.write("%s %s %s" % ("Decreasing step of alpha (from 0.1 to 0.001)      -> ", str(alpha_step), "\n")) 
arch_log_file.write("%s"       % ("=========================OUTPUT=======================================================\n")) 
arch_log_file.write("%s %s %s" % ("Output File Catalog.original     ", arch_output, "\n"))
arch_log_file.write("%s %s %s" % ("Output File Catalog.sort         ", arch_outsrt, "\n")) 
arch_log_file.write("%s %s %s" % ("Output File Summary sort         ", arch_sort, "\n")) 
arch_log_file.write("%s %s %s" % ("Output File Matrix Catal.        ", arch_catal, "\n")) 
arch_log_file.write("%s %s %s" % ("Output File Means, STD, CV.      ", arch_medsd, "\n"))
arch_log_file.write("%s %s %s" % ("Output File CV of the Groups     ", arch_cv, "\n"))
arch_log_file.write("%s %s %s" % ("Output File Training Grid        ", arch_grid, "\n")) 
arch_log_file.write("%s %s %s" % ("Output File Run Parameters       ", arch_log, "\n"))
#=========istruzioni aggiunte Roberto Bello 29/02/2012======================
know_index = str(1.0 - float(cv_media_gen_after) / float(str_med_cv_gen))	
know_index = know_index[0:6]
arch_log_file.write('%s %s %s' % ('*KIndex*   ', know_index, '\n'))
#=========fine istruzioni aggiunte da Roberto Bello 29/02/2012==============

min_err_txt = "%12.3f" % min_err      # format 8 integer and 3 decimals 
alpha_txt  = "%12.5f" % alpha         # format 6 integer and 5 decimals 
alpha_min_txt = "%12.5f" % alpha_min  # format 6 integer and 5 decimals 

print 
if min_err == 1000000000.000:
  print("Oops! No result. Try again with new alpha parameters")
print 
print ("EPOCH " + str(min_epok -1) + "   WITH MIN ERROR " + min_err_txt + 
  " starting alpha " + alpha_min_txt + "   ending alpha " + alpha_txt + 
  " Iterations " + str(iter) + " Total Epochs " + str(ne - 1))
print 
print 'Output File Catalog.original ' + arch_output 
print 'Output File Catalog.sort     ' + arch_outsrt 
print 'Output File Summary sort     ' + arch_sort 
print 'Output File Matrix Catal.    ' + arch_catal 
print 'Output File Means, STD, CV.  ' + arch_medsd 
print 'Output File CV of the Groups ' + arch_cv 
print 'Output File Training Grid    ' + arch_grid 
print 'Output File Run Parameters   ' + arch_log 
print 'CV before Catalog            ' + str_med_cv_gen
print 'CV after Catalog             ' + cv_media_gen_after
know_index = str(1.0 - float(cv_media_gen_after) / float(str_med_cv_gen))
know_index = know_index[0:6]
print 'Knowledge Index              ' + know_index
print 

# Elapsed time
t1 = datetime.datetime.now()
elapsed_time = t1 - t0
print "Elapsed time (seconds)   :   " + str(elapsed_time.seconds)
print 
Created by Roberto Bello on Wed, 19 Mar 2014 (MIT)
Python recipes (4591)
Roberto Bello's recipes (3)

Required Modules

  • (none specified)

Other Information and Tasks