Simple code to create and use public/private keypairs. Accompanied by a rudimentary encoder.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | # coding=utf-8
from __future__ import division, absolute_import, print_function
from base64 import b64encode
from fractions import gcd
from random import randrange
from collections import namedtuple
from math import log
from binascii import hexlify, unhexlify
import sys
PY3 = sys.version_info[0] == 3
if PY3:
binary_type = bytes
range_func = range
else:
binary_type = str
range_func = xrange
def is_prime(n, k=30):
# http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
if n <= 3:
return n == 2 or n == 3
neg_one = n - 1
# write n-1 as 2^s*d where d is odd
s, d = 0, neg_one
while not d & 1:
s, d = s + 1, d >> 1
assert 2 ** s * d == neg_one and d & 1
for _ in range_func(k):
a = randrange(2, neg_one)
x = pow(a, d, n)
if x in (1, neg_one):
continue
for _ in range_func(s - 1):
x = x ** 2 % n
if x == 1:
return False
if x == neg_one:
break
else:
return False
return True
def randprime(n=10 ** 8):
p = 1
while not is_prime(p):
p = randrange(n)
return p
def multinv(modulus, value):
"""
Multiplicative inverse in a given modulus
>>> multinv(191, 138)
18
>>> multinv(191, 38)
186
>>> multinv(120, 23)
47
"""
# http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
x, lastx = 0, 1
a, b = modulus, value
while b:
a, q, b = b, a // b, a % b
x, lastx = lastx - q * x, x
result = (1 - lastx * modulus) // value
if result < 0:
result += modulus
assert 0 <= result < modulus and value * result % modulus == 1
return result
KeyPair = namedtuple('KeyPair', 'public private')
Key = namedtuple('Key', 'exponent modulus')
def keygen(n, public=None):
""" Generate public and private keys from primes up to N.
Optionally, specify the public key exponent (65537 is popular choice).
>>> pubkey, privkey = keygen(2**64)
>>> msg = 123456789012345
>>> coded = pow(msg, *pubkey)
>>> plain = pow(coded, *privkey)
>>> assert msg == plain
"""
# http://en.wikipedia.org/wiki/RSA
prime1 = randprime(n)
prime2 = randprime(n)
composite = prime1 * prime2
totient = (prime1 - 1) * (prime2 - 1)
if public is None:
private = None
while True:
private = randrange(totient)
if gcd(private, totient) == 1:
break
public = multinv(totient, private)
else:
private = multinv(totient, public)
assert public * private % totient == gcd(public, totient) == gcd(private, totient) == 1
assert pow(pow(1234567, public, composite), private, composite) == 1234567
return KeyPair(Key(public, composite), Key(private, composite))
def encode(msg, pubkey, verbose=False):
chunksize = int(log(pubkey.modulus, 256))
outchunk = chunksize + 1
outfmt = '%%0%dx' % (outchunk * 2,)
bmsg = msg if isinstance(msg, binary_type) else msg.encode('utf-8')
result = []
for start in range_func(0, len(bmsg), chunksize):
chunk = bmsg[start:start + chunksize]
chunk += b'\x00' * (chunksize - len(chunk))
plain = int(hexlify(chunk), 16)
coded = pow(plain, *pubkey)
bcoded = unhexlify((outfmt % coded).encode())
if verbose:
print('Encode:', chunksize, chunk, plain, coded, bcoded)
result.append(bcoded)
return b''.join(result)
def decode(bcipher, privkey, verbose=False):
chunksize = int(log(privkey.modulus, 256))
outchunk = chunksize + 1
outfmt = '%%0%dx' % (chunksize * 2,)
result = []
for start in range_func(0, len(bcipher), outchunk):
bcoded = bcipher[start: start + outchunk]
coded = int(hexlify(bcoded), 16)
plain = pow(coded, *privkey)
chunk = unhexlify((outfmt % plain).encode())
if verbose:
print('Decode:', chunksize, chunk, plain, coded, bcoded)
result.append(chunk)
return b''.join(result).rstrip(b'\x00').decode('utf-8')
def key_to_str(key):
"""
Convert `Key` to string representation
>>> key_to_str(Key(50476910741469568741791652650587163073, 95419691922573224706255222482923256353))
'25f97fd801214cdc163796f8a43289c1:47c92a08bc374e96c7af66eb141d7a21'
"""
return ':'.join((('%%0%dx' % ((int(log(number, 256)) + 1) * 2)) % number) for number in key)
def str_to_key(key_str):
"""
Convert string representation to `Key` (assuming valid input)
>>> (str_to_key('25f97fd801214cdc163796f8a43289c1:47c92a08bc374e96c7af66eb141d7a21') ==
... Key(exponent=50476910741469568741791652650587163073, modulus=95419691922573224706255222482923256353))
True
"""
return Key(*(int(number, 16) for number in key_str.split(':')))
def main():
import doctest
print(doctest.testmod())
pubkey, privkey = keygen(2 ** 64)
msg = u'the quick brown fox jumped over the lazy dog ® ⌀'
h = encode(msg, pubkey, True)
p = decode(h, privkey, True)
print('-' * 20)
print('message:', msg)
print('encoded:', b64encode(h).decode())
print('decoded:', p)
print('private key:', key_to_str(privkey))
print('public key:', key_to_str(pubkey))
if __name__ == '__main__':
main()
|
Working RSA crypto functions with a rudimentary interface. Currently, it is good enough to generate valid key/pairs and demonstrate the algorithm in a way that makes it easy to run experiments and to learn how it works.
This is an early draft. Future updates will include:
- saving and loading keys in a standard file format
- more advanced encoder/decoder
- stricter tests for allowable primes
- preprocessor with compression/padding/salting
- possible command-line interface