Abstract Graph Class: A Graph is a very abstract and powerful data structure to hold many different kinds of data relationships.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 | #!/usr/bin/env python
# (c) Mark Janssen, this file is licensed under the GNU General Public License v2 found at <http://www.gnu.org/licenses>
# email: dreamingforward@gmail.com
# github: http://github.com/theProphet/GlassBeadGame
"""Graph class."""
#change a lot of these for loops to use faster map() function (see FAQ and QuickReference)
#also: map/reduce/filter now work with any iterable object (including dictionaries!)
#add persistence
#XXX Use of exceptions for control flow may prevent seeing actual errors. Perhaps catch exception, plus error string and assert string is as expected
from defdict import *
#EdgeBaseType = int
VertexBaseType = dict
GraphBaseType = defdict
_DEBUG = True
_PROFILE = True
NumberType = (int, float, long, complex) #for WVertex validation
#should all non-verb methods (sum_in, in_degree, etc.) be properties??
class VertexCommon(VertexBaseType):
"""Various common vertex methods."""
#Add id property to determine id, given Vertex
#XXX should clear() also remove in_vertices()?
__slots__ = ['_graph', '_id'] #functioning as a sort of "variable declaration" list
EDGEVALUE = 1
def __init__(self, graph, id, init={}):
"""Create a vertex object in graph. Assumes id already in graph.
Will add tails in init as necessary."""
self._graph = graph #graph to which this vertex belongs
self._id = id
super(VertexCommon, self).__init__()
self.update(init)
def update(self, tails, edge_value=EDGEVALUE): #XXX limit tails to list or dict?
"""Add tails in sequence or mapping type to Vertex."""
if isinstance(tails, dict):
for key, value in tails.iteritems(): #derived classes may override setitem so don't use dict.update
self[key] = value
else: #given iterable
for key in tails:
self[key] = edge_value
add = update
def discard(self, tail):
"""Removes tail(s) if present, otherwise does nothing.
>>> g = Graph()
>>> g.add(5, range(5))
>>> print g[5]
{0, 1, 2, 3, 4}
>>> g[5].discard(3) #remove single edge
>>> g[5].discard(90) #discard of non-existent edge ignored
>>> g[5].discard([0, 1, 90]) #discard multiple edges
>>> print g[5]
{2, 4}
"""
try: #single tail removal
del self[tail]
except LookupError: return #ignore non-existent tails
except TypeError, error: #must have been given a tail list
if not isinstance(tail, list): raise TypeError(error)
for t in tail: #XXX inefficient if self is near empty
try:
del self[t]
except LookupError:
if not self: break #good place to check if self is empty yet...
def in_vertices(self): #O(n)
"""Return iterator over the vertices that point to self.
>>> g = Graph()
>>> g.add(1, [2, 3, 4])
>>> g.add(2, [3, 2])
>>> list(g[2].in_vertices()) #XXX arbitrary order
[1, 2]
"""
for head in self._graph.itervalues():
if self._id in head:
yield head._id
def in_degree(self): #O(n)
"""Return number of edges pointing into vertex.
>>> g = Graph()
>>> g.add(1, [2, 3, 4])
>>> g.add(2, [3, 2])
>>> g[1].in_degree(), g[2].in_degree(), g[4].in_degree()
(0, 2, 1)
"""
return len(list(self.in_vertices()))
out_vertices = VertexBaseType.iterkeys
out_degree = VertexBaseType.__len__
def __getitem__(self, tail):
"""Return edge value or False if tail non-existent.
>>> g = Graph(VertexType=WVertex)
>>> g[1][3]
False
>>> g.add(1,3)
>>> g[1][3]
1
"""
return dict.get(self, tail, False)
def __setitem__(self, tail, value):
"""Set edge value. If tail does not exist, it is created and added to graph
if necessary.
>>> g = Graph(VertexType=WVertex)
>>> g[1][2] = 1
>>> g[1][3] += 1 #new tail (3): starts as value False (0), now add 1.
>>> print g
{1: {2: 1, 3: 1}, 2: {}, 3: {}}
"""
super(VertexCommon, self).__setitem__(tail, value)
if tail not in self._graph and tail!=self._id: #XXX ?do this first to preserve invariants in case vertex addition fails
self._graph.add(tail)
def copy(self): raise NotImplementedError
def __str__(self):
"""Return string of tail vertices with edge weight values.
>>> g = Graph(VertexType=WVertex)
>>> g.add(1, [1, 3, 4]); g.add(1, 3, 7)
>>> print g[1]
{1: 1, 3: 7, 4: 1}
"""
if _DEBUG: self._validate()
if not self: return '{}' #nothing to sort
keys = self.keys()
keys.sort()
return '{%s}' % ', '.join(["%r: %r" % (k, self[k]) for k in keys])
def _validate(self):
"""Assert Vertex invariants.
>>> g = Graph()
>>> g.add(1,2)
>>> dict.__setitem__(g[1], 3, 1) #tail value 3 not in graph
>>> g[1]._validate()
Traceback (most recent call last):
AssertionError: Non-existant tail 3 in vertex 1
>>> g.add(3,1)
>>> g[3]._id = 2
>>> g._validate() #should call vertex validates too
Traceback (most recent call last):
AssertionError: _graph[_id] is not self
"""
hash(self._id) #id should be hashable
assert isinstance(self._graph, Graph), "_graph attribute not a Graph"
assert self._graph[self._id] is self, "_graph[_id] is not self"
for t in self:
assert t in self._graph, "Non-existant tail %r in vertex %r" % (t, self._id)
class ReverseEdgeMixin(object): #could be used to make undirected graph?
"""Mixin to allow O(1) access to in_vertices. Inherit instead of or before VertexCommon."""
#XXX need doctests, also investigate slots issue (multiple bases have instance layout conflict)
__slots__ = []
def __init__(self, *args):
self.reverse = dict() #ReverseType()?
super(ReverseEdgeMixin, self).__init__(*args)
def in_vertices(self):
"""Return iterator over the vertices that point to self.
>>> class myvertex(ReverseEdgeMixin, Vertex):
... pass
>>> g = Graph(VertexType=myvertex)
>>> g[1].add([2, 3, 4])
>>> g[2].add([3, 2])
>>> list(g[2].in_vertices()) #XXX arbitrary order
[1, 2]
Can also use:
>>> list(g[2].reverse)
[1, 2]
"""
return self.reverse.iterkeys()
def in_degree(self):
"""Return number of edges pointing into vertex.
>>> class myvertex(ReverseEdgeMixin, Vertex):
... pass
>>> g = Graph(VertexType=myvertex)
>>> g[1].add([2, 3, 4])
>>> g[2].add([3, 2])
>>> g[1].in_degree(), g[2].in_degree(), g[4].in_degree()
(0, 2, 1)
Can also use:
>>> len(g[1].reverse), len(g[2].reverse), len(g[4].reverse)
(0, 2, 1)
"""
return len(self.reverse)
def sum_in(self):
"""Return sum of all edges that point to vertex.
>>> class myvertex(ReverseEdgeMixin, WVertex):
... pass
>>> g = Graph(VertexType=myvertex)
>>> g[1].add([1, 2, 3])
>>> g[4][1] += 3
>>> g[1].sum_in(), g[3].sum_in(), g[4].sum_in()
(4, 1, 0)
"""
return sum(self.reverse.itervalues())
def __setitem__(self, tail, value):
"""Set edge capacity. Will also update other vertex.reverse.
>>> class myvertex(ReverseEdgeMixin, WVertex):
... pass
>>> g = Graph(VertexType=myvertex)
>>> g[1][2] = 3
>>> g[1], g[2].reverse
({2: 3}, {1: 3})
"""
#print tail, value
super(ReverseEdgeMixin, self).__setitem__(tail, value)
value = self[tail] #value may have been modified by other classes
if tail != self._id: #creates tail vertex so check value first
self._graph[tail].reverse[self._id] = value
#print self._graph[tail].reverse
else:
self.reverse[self._id] = value
def __delitem__(self, tail):
"""Removes tail from self and self._id from tail.reverse.
>>> class myvertex(ReverseEdgeMixin, WVertex):
... pass
>>> g = Graph(VertexType=myvertex)
>>> g[1][2] = 3
>>> g[2].reverse
{1: 3}
>>> del g[1][2]
>>> g[2].reverse
{}
"""
if tail in self._graph:
del self._graph[tail].reverse[self._id] #creates tail vertex so check if tail in graph first
super(ReverseEdgeMixin, self).__delitem__(tail)
def clear(self): #XXX should this clear self.reverse also?
"""Removes all tails from self and all references to self._id in tail.reverse
>>> class myvertex(ReverseEdgeMixin, Vertex):
... pass
>>> g = Graph({1: {1: 1, 2: 4, 3: 9}, 2: {3: 8}}, myvertex)
>>> g[1].clear()
>>> g[1].reverse, g[2].reverse, g[3].reverse
({}, {}, {2: True})
"""
g, vid = self._graph, self._id
for tail in self:
del g[tail].reverse[vid]
super(ReverseEdgeMixin, self).clear()
def _validate(self):
super(ReverseEdgeMixin, self)._validate()
for tail in self:
assert self._graph[tail].reverse[self._id] == self[tail]
class WVertex(VertexCommon):
"""WVertex has directed, weighted edges."""
__slots__ = []
def sum_in(self):
"""Return sum of all edges that point to vertex.
>>> g = Graph(VertexType=WVertex)
>>> g.add(1, [1, 2, 3])
>>> g.add(4, 1, 3)
>>> g[1].sum_in(), g[3].sum_in(), g[4].sum_in()
(4, 1, 0)
"""
g, t = self._graph, self._id
sum = 0
for h in self.in_vertices():
sum += g[h][t]
return sum
def sum_out(self):
"""Return sum of all edges that leave from vertex.
>>> g = Graph(VertexType=WVertex)
>>> g.add(1, [1, 2, 3])
>>> g.add(1, 4, 3)
>>> g[1].sum_out(), g[2].sum_out()
(6, 0)
"""
return sum(self.itervalues())
def _validate(self):
super(WVertex, self)._validate() #Vertex._validate(self)
for weight in self.itervalues():
assert isinstance(weight, NumberType)
class Vertex(VertexCommon):
"""Vertex has directed, unweighted, edges."""
__slots__ = []
EDGEVALUE = True #XXX doesn't get used -- Graph[v1][v2] returns 1 instead of True
def __setitem__(self, tail, value):
"""Set edge value. If tail does not exist, it is created and added to graph
if necessary.
>>> g = Graph()
>>> g[1][2] = 3 #edge values ignored on plain Vertex
>>> g[1][2]
True
"""
super(Vertex, self).__setitem__(tail, True)
def __str__(self):
"""Return string of tail vertices in set notation.
>>> g = Graph()
>>> g.add(1, [1, 3, 4])
>>> print g[1]
{1, 3, 4}
"""
if _DEBUG: self._validate()
if not self: return '{}' #nothing to sort
keys = self.keys()
keys.sort()
return '{%s}' % ', '.join(map(repr, keys))
def MERGE_VERTEX(g, h, vert): g[h].update(vert)
class Graph(GraphBaseType):
"""Basic graph class. Graph features (directed, weighted, self-referencing, etc) determined by VertexType."""
#Basic data structure {vertex id: {t1: edge; t2: edge}}
#Add label to __init__ to attach description to graph?
#Perhaps make default vertex type WVertex and change doctests accordingly.
#Graph.fromkeys() override?
__slots__ = ['VertexType']
def __init__(self, init={}, VertexType=Vertex):
"""Create the graph, optionally initializing from another graph.
Optional VertexType parameter can be passed to specify default vertex type.
>>> g = Graph(VertexType=WVertex)
>>> len(g), g
(0, {})
>>> g.add([1, 2, 3], [2, 3], 5)
>>> print g
{1: {2: 5, 3: 5}, 2: {2: 5, 3: 5}, 3: {2: 5, 3: 5}}
>>> g2 = Graph(g, Vertex) #can initialize with other Graph type, will convert to Vertex type
>>> print g2
{1: {2, 3}, 2: {2, 3}, 3: {2, 3}}
"""
self.VertexType = VertexType
super(Graph, self).__init__(init, {}, MERGE_VERTEX)
def update(self, other, default=USE_DEFAULT, collision=MERGE_VERTEX): #XXX could remove this if collision was attribute of defdict
"""Merges one graph with another. All vertices will be convertex to VertexType. Takes union of edge lists.
>>> g1, g2 = Graph(VertexType=Vertex), Graph(VertexType=WVertex)
>>> g1.add(1, [1, 2])
>>> g2.add(3, [2, 3]); g2.add(1, 2, 3); g2.add(1, 4, 2)
>>> g1.update(g2) #XXX weight values get set on plain Vertex.
>>> print g1
{1: {1, 2, 4}, 2: {}, 3: {2, 3}, 4: {}}
>>> g2.add(3, 5) #changes to g2 should not affect g1
>>> g1._validate()
"""
super(Graph, self).update(other, default, collision)
def add(self, head, tail=[], edge_value=VertexCommon.EDGEVALUE):
"""Add the vertices and/or edges.
Parameters can be single vertex or list of vertices.
If no second parameter given, assume vertex addition only.
>>> g = Graph(VertexType=WVertex)
>>> g.add(1) #single vertex addition
>>> g.add(1) #adding existing vertex is ignored
>>> g.add([2, 3, 4]) #multiple vertex addition
>>> g.add([2]) #list containing only one vertex is allowed
>>> print g
{1: {}, 2: {}, 3: {}, 4: {}}
If second parameter given, then edge addition is performed.
Vertices are added as necessary. An optional edge value
is accepted as a third parameter.
>>> g.add(2, 1) #edge from vertex 2 to vertex 1
>>> g.add(1, 5, 100) #edge from 1 to new vertex 5 with weight 100
>>> g.add(1, 5, 90) #adding existing edge, edge value overwritten
>>> g.add(3, 3, 2) #loops are allowed
>>> g.add(3, 3) #edge weight overwritten by default if not specified
>>> print g
{1: {5: 90}, 2: {1: 1}, 3: {3: 1}, 4: {}, 5: {}}
Vertex lists allowed on either parameter for multiple edge addition.
>>> g.clear() #remove all vertices (and edges)
>>> g.add(1, [0, 2]) #add edges (1, 0) and (1, 2)
>>> g.add(1, [1])
>>> print g
{0: {}, 1: {0: 1, 1: 1, 2: 1}, 2: {}}
>>> g.add(range(3), range(3)) #fully-connected 3-vertex graph
>>> print g
{0: {0: 1, 1: 1, 2: 1}, 1: {0: 1, 1: 1, 2: 1}, 2: {0: 1, 1: 1, 2: 1}}
"""
#XXX if no edge_value given, then value should not be overwritten
if not isinstance(tail, list): tail = [tail]
try: #single head addition
self[head].add(tail, edge_value)
except TypeError, error: #multiple head addition
if not isinstance(head, list): raise TypeError(error)
for h in head: #XXX will add same tails multiple times
self[h].add(tail, edge_value)
def discard(self, head, tail=[]):
"""Remove vertices and/or edges. Parameters can be single vertex or list of vertices.
If tail is empty, then vertex deletions are made and any connected edges.
>>> g = Graph()
>>> g.add(range(3), range(4))
>>> g.discard(1) #remove vertex 1
>>> g.discard(10) #discard of non-existent vertex ignored
>>> g.discard([1]) #list with single vertex is fine
>>> g.discard([1, 3]) #discards vertices in list
>>> print g
{0: {0, 2}, 2: {0, 2}}
If tail is non-empty, then only edge deletions are made.
>>> g.discard(0, 2) #discard edge
>>> g.discard(5, 0) #non-existent edge ignored
>>> g.discard(2, [1, 0, 2, 2]) #will discard two actual edges
>>> print g
{0: {0}, 2: {}}
"""
if tail==[]: #vertex deletions
try:
del self[head]
except LookupError: pass #do nothing if given non-existent vertex
except TypeError, error: #given head list
if not isinstance(head, list): raise TypeError(error)
for h in head[:]: #must use copy since removing below
if h in self:
self[h].clear()
super(Graph, self).__delitem__(h) #don't duplicate effort (will discard in_vertices below)
else: head.remove(h) #for faster tail removal in next loop
for h in self.itervalues(): #visit remaining vertices and remove occurances of head items in edge lists
h.discard(head)
else: #edge deletions only
if not isinstance(head, list): head = [head] #quick and dirty to avoid extra code
for h in head:
if h in self:
self[h].discard(tail)
if _DEBUG: self._validate()
def __contains__(self, vid): #XXX probably slows things down for little value?
"""Returns non-zero if v in self. If a list is given, all
items are checked for containment.
>>> g = Graph()
>>> g[1].add([1, 2, 2, 3])
>>> 1 in g and 2 in g
True
>>> [1, 2, 3] in g
True
>>> [1, 4] in g
False
>>> [] in g
True
"""
try:
return dict.__contains__(self, vid)
except TypeError, error: #must have been given list
if not isinstance(vid, list): raise TypeError(error)
for v in vid:
if not dict.__contains__(self, v):
return False
return True
def __getitem__(self, vid): #could just set equal to GraphBaseType.setdefault, but doctest module complains
"""Return value of corresponding key. If key does not exist, create it
with default value.
>>> g = Graph()
>>> g[1].add([1,2])
>>> g[3][1]
False
>>> print g #NOTE: Vertex(3) created!
{1: {1, 2}, 2: {}, 3: {}}
"""
return self.setdefault(vid, {}) #will convert plain {} to VertexType if necessary
def __setitem__(self, vid, value):
"""Set graph[vid] to VertexType(value).
>>> g = Graph(VertexType=WVertex)
>>> g[1] = {} #set g[1] to empty vertex (no out edges)
>>> type(g[1]) is WVertex
True
>>> g[2] = {1: 4, 3: 9} #non-existent vertex values get created automatically
>>> print g #XXX what if VertexType==Vertex -> how to specify no edge value???
{1: {}, 2: {1: 4, 3: 9}, 3: {}}
>>> g._validate()
>>>
"""
if isinstance(value, self.VertexType) and value._id == vid and value._graph == self:
dict.__setitem__(self, vid, value)
else: #convert to VertexType or create copy of VertexType
dict.__setitem__(self, vid, self.VertexType(self, vid, value)) #XXX shallow copy
def __delitem__(self, head):
"""Delete a single vertex and associated edges.
>>> g = Graph()
>>> g.add([1, 2], [1, 2, 3])
>>> del g[2] #will remove vertex 2 and edges [(1, 2), (2, 1), (2, 2), (2, 3)]
>>> print g
{1: {1, 3}, 3: {}}
Raises LookupError if given non-existant vertex.
>>> del g[2]
Traceback (most recent call last):
...
KeyError: 2
"""
dict.__getitem__(self, head).clear() #removes out vertices (bypass key creation with dict.__getitem__)
for v in list(self[head].in_vertices()): #create copy (via list()) since in_vertices contents may change during iteration
del self[v][head]
super(Graph, self).__delitem__(head)
def __str__(self):
"""Return graph in adjacency format.
>>> g = Graph()
>>> g.add(range(3), range(3))
>>> str(g)
'{0: {0, 1, 2}, 1: {0, 1, 2}, 2: {0, 1, 2}}'
>>> g = Graph(VertexType=WVertex)
>>> g.add(range(3), range(3))
>>> str(g)
'{0: {0: 1, 1: 1, 2: 1}, 1: {0: 1, 1: 1, 2: 1}, 2: {0: 1, 1: 1, 2: 1}}'
"""
if _DEBUG: self._validate()
return super(Graph, self).__str__()
#return '{%s}' % ', '.join(map(str, self.itervalues()))
def display(self):
"""Display adjacency list.
>>> g=Graph()
>>> g.add(range(2), range(3))
>>> g.display()
0: {0, 1, 2}
1: {0, 1, 2}
2: {}
"""
if _DEBUG: self._validate()
for vid, v in self.iteritems():
print "%s: %s" % (vid, v)
#alternate syntax for various items
vertices = GraphBaseType.iterkeys
order = GraphBaseType.__len__
def pop(self, key, default): raise NotImplementedError
def popitem(self): raise NotImplementedError
def copy(self): raise NotImplementedError
def _validate(self):
"""Check graph invariants.
>>> g = Graph()
>>> g[1] = {2: 3, 3: 9}
>>> g._validate()
>>> dict.__setitem__(g, 1, {2: 3, 3: 9}) #bypass Graph
>>> g._validate()
Traceback (most recent call last):
AssertionError: vertex type not found on 1
"""
#NOTE: calling this after each add/discard slows things down considerably!
for vid, v in self.iteritems():
assert isinstance(v, self.VertexType), "vertex type not found on " + str(vid)
v._validate()
def gprofile(g, size=100):
import time
print "Profiling (ignoring debug)..."
_DEBUG = 0
for i in [1,2]:
start=time.clock()
g.add(range(size),range(100,size + 100))
finish=time.clock()
print "Add %i, 100-(%i+100); pass %i: %5.2fs" % (size, size, i, (finish-start))
for i in [1,2]:
start=time.clock()
g.discard(range(size + 50), range(100))#, range(1000))
finish=time.clock()
print "Discard (%i+50), 100; pass %i: %5.2fs" % (size, i, (finish-start))
g.clear()
g.add(0)
for i in [1,2]:
start=time.clock()
g[0].update(range(size))
finish=time.clock()
print "Update %i, %i; pass %i: %5.2fs" % (size, size, i, (finish-start))
g.clear()
def _test():
"""Miscellaneous tests.
>>> g = Graph(VertexType=WVertex)
>>> g.add(5) #add vertex with id=5 to graph, default edge value=1
>>> g.add(5, 5) #edges pointing back to self are allowed
>>> g[5][7] = 42 #add single out-edge from vertex 5 to 7 with weight 42
>>> assert 7 in g #vertex 7 automatically added to graph
>>> g[5].add([3, 2, 4]) #add 3 out edges from 5, default weight 1
>>> print g[5] #show out-edges from vertex 5
{2: 1, 3: 1, 4: 1, 5: 1, 7: 42}
>>> g.add(5, 7, 24) #edge values are over-written
>>> g[5][7]
24
>>> g.add(5, 7) #edge value over-written with default if not specified
>>> g[5][7]
1
"""
pass
if __name__ == '__main__':
import doctest
doctest.testmod() #, isprivate=lambda *args: 0)
|
This is a nice, recursively-defined Graph class which makes it very simple and flexible. This implementation uses the generalization of a dictionary facilitated by the recipe: defdict.