#!/usr/bin/env python3
'''Class to compute if a point lies inside/outside/on-side of a polygon.
This is a Python 3 implementation of the Sloan's improved version of the
Nordbeck and Rystedt algorithm, published in the paper:
SLOAN, S.W. (1985): A point-in-polygon program.
Adv. Eng. Software, Vol 7, No. 1, pp 45-47.
This class has 1 method (is_inside) that returns the minimum distance to the
nearest point of the polygon:
If is_inside < 0 then point is outside the polygon.
If is_inside = 0 then point in on a side of the polygon.
If is_inside > 0 then point is inside the polygon.
'''
import numpy as np
def _det(xvert, yvert):
'''Compute twice the area of the triangle defined by points with using
determinant formula.
Input parameters:
xvert -- A vector of nodal x-coords (array-like).
yvert -- A vector of nodal y-coords (array-like).
Output parameters:
Twice the area of the triangle defined by the points.
Notes:
_det is positive if points define polygon in anticlockwise order.
_det is negative if points define polygon in clockwise order.
_det is zero if at least two of the points are concident or if
all points are collinear.
'''
xvert = np.asfarray(xvert)
yvert = np.asfarray(yvert)
x_prev = np.concatenate(([xvert[-1]], xvert[:-1]))
y_prev = np.concatenate(([yvert[-1]], yvert[:-1]))
return np.sum(yvert * x_prev - xvert * y_prev, axis=0)
class Polygon:
'''Polygon object.
Input parameters:
x -- A sequence of nodal x-coords.
y -- A sequence of nodal y-coords.
'''
def __init__(self, x, y):
if len(x) != len(y):
raise IndexError('x and y must be equally sized.')
self.x = np.asfarray(x)
self.y = np.asfarray(y)
# Closes the polygon if were open
x1, y1 = x[0], y[0]
xn, yn = x[-1], y[-1]
if x1 != xn or y1 != yn:
self.x = np.concatenate((self.x, [x1]))
self.y = np.concatenate((self.y, [y1]))
# Anti-clockwise coordinates
if _det(self.x, self.y) < 0:
self.x = self.x[::-1]
self.y = self.y[::-1]
def is_inside(self, xpoint, ypoint, smalld=1e-12):
'''Check if point is inside a general polygon.
Input parameters:
xpoint -- The x-coord of the point to be tested.
ypoint -- The y-coords of the point to be tested.
smalld -- A small float number.
xpoint and ypoint could be scalars or array-like sequences.
Output parameters:
mindst -- The distance from the point to the nearest point of the
polygon.
If mindst < 0 then point is outside the polygon.
If mindst = 0 then point in on a side of the polygon.
If mindst > 0 then point is inside the polygon.
Notes:
An improved version of the algorithm of Nordbeck and Rydstedt.
REF: SLOAN, S.W. (1985): A point-in-polygon program. Adv. Eng.
Software, Vol 7, No. 1, pp 45-47.
'''
xpoint = np.asfarray(xpoint)
ypoint = np.asfarray(ypoint)
# Scalar to array
if xpoint.shape is tuple():
xpoint = np.array([xpoint], dtype=float)
ypoint = np.array([ypoint], dtype=float)
scalar = True
else:
scalar = False
# Check consistency
if xpoint.shape != ypoint.shape:
raise IndexError('x and y has different shapes')
# If snear = True: Dist to nearest side < nearest vertex
# If snear = False: Dist to nearest vertex < nearest side
snear = np.ma.masked_all(xpoint.shape, dtype=bool)
# Initialize arrays
mindst = np.ones_like(xpoint, dtype=float) * np.inf
j = np.ma.masked_all(xpoint.shape, dtype=int)
x = self.x
y = self.y
n = len(x) - 1 # Number of sides/vertices defining the polygon
# Loop over each side defining polygon
for i in range(n):
d = np.ones_like(xpoint, dtype=float) * np.inf
# Start of side has coords (x1, y1)
# End of side has coords (x2, y2)
# Point has coords (xpoint, ypoint)
x1 = x[i]
y1 = y[i]
x21 = x[i + 1] - x1
y21 = y[i + 1] - y1
x1p = x1 - xpoint
y1p = y1 - ypoint
# Points on infinite line defined by
# x = x1 + t * (x1 - x2)
# y = y1 + t * (y1 - y2)
# where
# t = 0 at (x1, y1)
# t = 1 at (x2, y2)
# Find where normal passing through (xpoint, ypoint) intersects
# infinite line
t = -(x1p * x21 + y1p * y21) / (x21 ** 2 + y21 ** 2)
tlt0 = t < 0
tle1 = (0 <= t) & (t <= 1)
# Normal intersects side
d[tle1] = ((x1p[tle1] + t[tle1] * x21) ** 2 +
(y1p[tle1] + t[tle1] * y21) ** 2)
# Normal does not intersects side
# Point is closest to vertex (x1, y1)
# Compute square of distance to this vertex
d[tlt0] = x1p[tlt0] ** 2 + y1p[tlt0] ** 2
# Store distances
mask = d < mindst
mindst[mask] = d[mask]
j[mask] = i
# Point is closer to (x1, y1) than any other vertex or side
snear[mask & tlt0] = False
# Point is closer to this side than to any other side or vertex
snear[mask & tle1] = True
if np.ma.count(snear) != snear.size:
raise IndexError('Error computing distances')
mindst **= 0.5
# Point is closer to its nearest vertex than its nearest side, check if
# nearest vertex is concave.
# If the nearest vertex is concave then point is inside the polygon,
# else the point is outside the polygon.
jo = j.copy()
jo[j == 0] -= 1
area = _det([x[j + 1], x[j], x[jo - 1]], [y[j + 1], y[j], y[jo - 1]])
mindst[~snear] = np.copysign(mindst, area)[~snear]
# Point is closer to its nearest side than to its nearest vertex, check
# if point is to left or right of this side.
# If point is to left of side it is inside polygon, else point is
# outside polygon.
area = _det([x[j], x[j + 1], xpoint], [y[j], y[j + 1], ypoint])
mindst[snear] = np.copysign(mindst, area)[snear]
# Point is on side of polygon
mindst[np.fabs(mindst) < smalld] = 0
# If input values were scalar then the output should be too
if scalar:
mindst = float(mindst)
return mindst
# TEST
if __name__ == '__main__':
# Define a triangle
xvert = [10, 90, 90]
yvert = [10, 90, 10]
poly = Polygon(xvert, yvert)
# Test
x = np.arange(101)
xx, yy = np.meshgrid(x, x)
grid = poly.is_inside(xx, yy)
# Plot
try:
import matplotlib.pyplot as plt
except ImportError:
print(grid)
else:
plt.contour(xx, yy, grid, levels=np.linspace(-100, 100, 51), colors='k')
plt.pcolor(xx, yy, grid, vmin=-80, vmax=80, cmap=plt.get_cmap('RdBu'))
plt.colorbar()
plt.title('Distance to polygon border')
plt.show(block=True)