A simple genetic algorithm neural network.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | from operator import itemgetter, attrgetter
import math
import random
import string
import timeit
from timeit import Timer as t
import matplotlib.pyplot as plt
import numpy as np
def sigmoid (x):
return math.tanh(x)
def makeMatrix ( I, J, fill=0.0):
m = []
for i in range(I):
m.append([fill]*J)
return m
def randomizeMatrix ( matrix, a, b):
for i in range ( len (matrix) ):
for j in range ( len (matrix[0]) ):
matrix[i][j] = random.uniform(a,b)
class NN:
def __init__(self, NI, NH, NO):
self.ni = NI
self.nh = NH
self.no = NO
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
self.wi = [ [0.0]*self.nh for i in range(self.ni) ]
self.wo = [ [0.0]*self.no for j in range(self.nh) ]
randomizeMatrix ( self.wi, -0.2, 0.2 )
randomizeMatrix ( self.wo, -2.0, 2.0 )
def runNN (self, inputs):
if len(inputs) != self.ni:
print 'incorrect number of inputs'
for i in range(self.ni):
self.ai[i] = inputs[i]
for j in range(self.nh):
self.ah[j] = sigmoid(sum([ self.ai[i]*self.wi[i][j] for i in range(self.ni) ]))
for k in range(self.no):
self.ao[k] = sigmoid(sum([ self.ah[j]*self.wo[j][k] for j in range(self.nh) ]))
return self.ao
def weights(self):
print 'Input weights:'
for i in range(self.ni):
print self.wi[i]
print
print 'Output weights:'
for j in range(self.nh):
print self.wo[j]
print ''
def test(self, patterns):
results, targets = [], []
for p in patterns:
inputs = p[0]
rounded = [ round(i) for i in self.runNN(inputs) ]
if rounded == p[1]: result = '+++++'
else: result = '-----'
print '%s %s %s %s %s %s %s' %( 'Inputs:', p[0], '-->', str(self.runNN(inputs)).rjust(65), 'Target', p[1], result)
results+= self.runNN(inputs)
targets += p[1]
return results, targets
def sumErrors (self):
error = 0.0
for p in pat:
inputs = p[0]
targets = p[1]
self.runNN(inputs)
error += self.calcError(targets)
inverr = 1.0/error
return inverr
def calcError (self, targets):
error = 0.0
for k in range(len(targets)):
error += 0.5 * (targets[k]-self.ao[k])**2
return error
def assignWeights (self, weights, I):
io = 0
for i in range(self.ni):
for j in range(self.nh):
self.wi[i][j] = weights[I][io][i][j]
io = 1
for j in range(self.nh):
for k in range(self.no):
self.wo[j][k] = weights[I][io][j][k]
def testWeights (self, weights, I):
same = []
io = 0
for i in range(self.ni):
for j in range(self.nh):
if self.wi[i][j] != weights[I][io][i][j]:
same.append(('I',i,j, round(self.wi[i][j],2),round(weights[I][io][i][j],2),round(self.wi[i][j] - weights[I][io][i][j],2)))
io = 1
for j in range(self.nh):
for k in range(self.no):
if self.wo[j][k] != weights[I][io][j][k]:
same.append((('O',j,k), round(self.wo[j][k],2),round(weights[I][io][j][k],2),round(self.wo[j][k] - weights[I][io][j][k],2)))
if same != []:
print same
def roulette (fitnessScores):
cumalativeFitness = 0.0
r = random.random()
for i in range(len(fitnessScores)):
cumalativeFitness += fitnessScores[i]
if cumalativeFitness > r:
return i
def calcFit (numbers): # each fitness is a fraction of the total error
total, fitnesses = sum(numbers), []
for i in range(len(numbers)):
fitnesses.append(numbers[i]/total)
return fitnesses
# takes a population of NN objects
def pairPop (pop):
weights, errors = [], []
for i in range(len(pop)): # for each individual
weights.append([pop[i].wi,pop[i].wo]) # append input & output weights of individual to list of all pop weights
errors.append(pop[i].sumErrors()) # append 1/sum(MSEs) of individual to list of pop errors
fitnesses = calcFit(errors) # fitnesses are a fraction of the total error
for i in range(int(pop_size*0.15)):
print str(i).zfill(2), '1/sum(MSEs)', str(errors[i]).rjust(15), str(int(errors[i]*graphical_error_scale)*'-').rjust(20), 'fitness'.rjust(12), str(fitnesses[i]).rjust(17), str(int(fitnesses[i]*1000)*'-').rjust(20)
del pop
return zip(weights, errors,fitnesses) # weights become item[0] and fitnesses[1] in this way fitness is paired with its weight in a tuple
def rankPop (newpopW,pop):
errors, copy = [], [] # a fresh pop of NN's are assigned to a list of len pop_size
#pop = [NN(ni,nh,no)]*pop_size # this does not work as they are all copies of eachother
pop = [NN(ni,nh,no) for i in range(pop_size) ]
for i in range(pop_size): copy.append(newpopW[i])
for i in range(pop_size):
pop[i].assignWeights(newpopW, i) # each individual is assigned the weights generated from previous iteration
pop[i].testWeights(newpopW, i)
for i in range(pop_size):
pop[i].testWeights(newpopW, i)
pairedPop = pairPop(pop) # the fitness of these weights is calculated and tupled with the weights
rankedPop = sorted(pairedPop, key = itemgetter(-1), reverse = True) # weights are sorted in descending order of fitness (fittest first)
errors = [ eval(repr(x[1])) for x in rankedPop ]
return rankedPop, eval(repr(rankedPop[0][1])), float(sum(errors))/float(len(errors))
def iteratePop (rankedPop):
rankedWeights = [ item[0] for item in rankedPop]
fitnessScores = [ item[-1] for item in rankedPop]
newpopW = [ eval(repr(x)) for x in rankedWeights[:int(pop_size*0.15)] ]
while len(newpopW) <= pop_size: # Breed two randomly selected but different chromos until pop_size reached
ch1, ch2 = [], []
index1 = roulette(fitnessScores)
index2 = roulette(fitnessScores)
while index1 == index2: # ensures different chromos are used for breeeding
index2 = roulette(fitnessScores)
#index1, index2 = 3,4
ch1.extend(eval(repr(rankedWeights[index1])))
ch2.extend(eval(repr(rankedWeights[index2])))
if random.random() < crossover_rate:
ch1, ch2 = crossover(ch1, ch2)
mutate(ch1)
mutate(ch2)
newpopW.append(ch1)
newpopW.append(ch2)
return newpopW
graphical_error_scale = 100
max_iterations = 4000
pop_size = 100
mutation_rate = 0.1
crossover_rate = 0.8
ni, nh, no = 4,6,1
def main ():
# Rank first random population
pop = [ NN(ni,nh,no) for i in range(pop_size) ] # fresh pop
pairedPop = pairPop(pop)
rankedPop = sorted(pairedPop, key = itemgetter(-1), reverse = True) # THIS IS CORRECT
# Keep iterating new pops until max_iterations
iters = 0
tops, avgs = [], []
while iters != max_iterations:
if iters%1 == 0:
print 'Iteration'.rjust(150), iters
newpopW = iteratePop(rankedPop)
rankedPop, toperr, avgerr = rankPop(newpopW,pop)
tops.append(toperr)
avgs.append(avgerr)
iters+=1
# test a NN with the fittest weights
tester = NN (ni,nh,no)
fittestWeights = [ x[0] for x in rankedPop ]
tester.assignWeights(fittestWeights, 0)
results, targets = tester.test(testpat)
x = np.arange(0,150)
title2 = 'Test after '+str(iters)+' iterations'
plt.title(title2)
plt.ylabel('Node output')
plt.xlabel('Instances')
plt.plot( results, 'xr', linewidth = 0.5)
plt.plot( targets, 's', color = 'black',linewidth = 3)
#lines = plt.plot( results, 'sg')
plt.annotate(s='Target Values', xy = (110, 0),color = 'black', family = 'sans-serif', size ='small')
plt.annotate(s='Test Values', xy = (110, 0.5),color = 'red', family = 'sans-serif', size ='small', weight = 'bold')
plt.figure(2)
plt.subplot(121)
plt.title('Top individual error evolution')
plt.ylabel('Inverse error')
plt.xlabel('Iterations')
plt.plot( tops, '-g', linewidth = 1)
plt.subplot(122)
plt.plot( avgs, '-g', linewidth = 1)
plt.title('Population average error evolution')
plt.ylabel('Inverse error')
plt.xlabel('Iterations')
plt.show()
print 'max_iterations',max_iterations,'\tpop_size',pop_size,'pop_size*0.15',int(pop_size*0.15),'\tmutation_rate',mutation_rate,'crossover_rate',crossover_rate,'ni, nh, no',ni, nh, no
def crossover (m1, m2):
r = random.randint(0, (ni*nh)+(nh*no) ) # ni*nh+nh*no = total weights
output1 = [ [[0.0]*nh]*ni ,[[0.0]*no]*nh ]
output2 = [ [[0.0]*nh]*ni ,[[0.0]*no]*nh ]
for i in range(len(m1)):
for j in range(len(m1[i])):
for k in range(len(m1[i][j])):
if r >= 0:
output1[i][j][k] = m1[i][j][k]
output2[i][j][k] = m2[i][j][k]
elif r < 0:
output1[i][j][k] = m2[i][j][k]
output2[i][j][k] = m1[i][j][k]
r -=1
return output1, output2
def mutate (m):
# could include a constant to control
# how much the weight is mutated by
for i in range(len(m)):
for j in range(len(m[i])):
for k in range(len(m[i][j])):
if random.random() < mutation_rate:
m[i][j][k] = random.uniform(-2.0,2.0)
if __name__ == "__main__":
main()
pat = [
[[5.1, 3.5, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.9, 3.0, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.7, 3.2, 1.3, 0.2], [-1], ['Iris-setosa']] ,
[[5.4, 3.9, 1.7, 0.4], [-1], ['Iris-setosa']] ,
[[4.6, 3.4, 1.4, 0.3], [-1], ['Iris-setosa']] ,
[[5.0, 3.4, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[4.4, 2.9, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.9, 3.1, 1.5, 0.1], [-1], ['Iris-setosa']] ,
[[5.4, 3.7, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[4.8, 3.4, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[4.8, 3.0, 1.4, 0.1], [-1], ['Iris-setosa']] ,
[[4.3, 3.0, 1.1, 0.1], [-1], ['Iris-setosa']] ,
[[5.8, 4.0, 1.2, 0.2], [-1], ['Iris-setosa']] ,
[[5.7, 4.4, 1.5, 0.4], [-1], ['Iris-setosa']] ,
[[5.4, 3.9, 1.3, 0.4], [-1], ['Iris-setosa']] ,
[[5.1, 3.5, 1.4, 0.3], [-1], ['Iris-setosa']] ,
[[5.7, 3.8, 1.7, 0.3], [-1], ['Iris-setosa']] ,
[[5.1, 3.8, 1.5, 0.3], [-1], ['Iris-setosa']] ,
[[5.4, 3.4, 1.7, 0.2], [-1], ['Iris-setosa']] ,
[[5.1, 3.7, 1.5, 0.4], [-1], ['Iris-setosa']] ,
[[4.6, 3.6, 1.0, 0.2], [-1], ['Iris-setosa']] ,
[[5.1, 3.3, 1.7, 0.5], [-1], ['Iris-setosa']] ,
[[4.8, 3.4, 1.9, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.0, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.4, 1.6, 0.4], [-1], ['Iris-setosa']] ,
[[5.2, 3.5, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[5.2, 3.4, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.7, 3.2, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[4.8, 3.1, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[5.4, 3.4, 1.5, 0.4], [-1], ['Iris-setosa']] ,
[[5.2, 4.1, 1.5, 0.1], [-1], ['Iris-setosa']] ,
[[5.5, 4.2, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.9, 3.1, 1.5, 0.1], [-1], ['Iris-setosa']] ,
[[5.0, 3.2, 1.2, 0.2], [-1], ['Iris-setosa']] ,
[[5.5, 3.5, 1.3, 0.2], [-1], ['Iris-setosa']] ,
[[4.9, 3.1, 1.5, 0.1], [-1], ['Iris-setosa']] ,
[[4.4, 3.0, 1.3, 0.2], [-1], ['Iris-setosa']] ,
[[5.1, 3.4, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.5, 1.3, 0.3], [-1], ['Iris-setosa']] ,
[[4.5, 2.3, 1.3, 0.3], [-1], ['Iris-setosa']] ,
[[4.4, 3.2, 1.3, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.5, 1.6, 0.6], [-1], ['Iris-setosa']] ,
[[5.1, 3.8, 1.9, 0.4], [-1], ['Iris-setosa']] ,
[[4.8, 3.0, 1.4, 0.3], [-1], ['Iris-setosa']] ,
[[5.1, 3.8, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[4.6, 3.2, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[5.3, 3.7, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.3, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[7.0, 3.2, 4.7, 1.4], [0], ['Iris-versicolor']] ,
[[6.4, 3.2, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[6.9, 3.1, 4.9, 1.5], [0], ['Iris-versicolor']] ,
[[5.5, 2.3, 4.0, 1.3], [0], ['Iris-versicolor']] ,
[[6.5, 2.8, 4.6, 1.5], [0], ['Iris-versicolor']] ,
[[5.7, 2.8, 4.5, 1.3], [0], ['Iris-versicolor']] ,
[[6.3, 3.3, 4.7, 1.6], [0], ['Iris-versicolor']] ,
[[4.9, 2.4, 3.3, 1.0], [0], ['Iris-versicolor']] ,
[[6.6, 2.9, 4.6, 1.3], [0], ['Iris-versicolor']] ,
[[5.2, 2.7, 3.9, 1.4], [0], ['Iris-versicolor']] ,
[[5.0, 2.0, 3.5, 1.0], [0], ['Iris-versicolor']] ,
[[5.9, 3.0, 4.2, 1.5], [0], ['Iris-versicolor']] ,
[[6.0, 2.2, 4.0, 1.0], [0], ['Iris-versicolor']] ,
[[6.1, 2.9, 4.7, 1.4], [0], ['Iris-versicolor']] ,
[[5.6, 2.9, 3.6, 1.3], [0], ['Iris-versicolor']] ,
[[6.7, 3.1, 4.4, 1.4], [0], ['Iris-versicolor']] ,
[[5.6, 3.0, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[5.8, 2.7, 4.1, 1.0], [0], ['Iris-versicolor']] ,
[[6.2, 2.2, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[5.6, 2.5, 3.9, 1.1], [0], ['Iris-versicolor']] ,
[[5.9, 3.2, 4.8, 1.8], [0], ['Iris-versicolor']] ,
[[6.1, 2.8, 4.0, 1.3], [0], ['Iris-versicolor']] ,
[[6.3, 2.5, 4.9, 1.5], [0], ['Iris-versicolor']] ,
[[6.1, 2.8, 4.7, 1.2], [0], ['Iris-versicolor']] ,
[[6.4, 2.9, 4.3, 1.3], [0], ['Iris-versicolor']] ,
[[6.6, 3.0, 4.4, 1.4], [0], ['Iris-versicolor']] ,
[[6.8, 2.8, 4.8, 1.4], [0], ['Iris-versicolor']] ,
[[6.7, 3.0, 5.0, 1.7], [0], ['Iris-versicolor']] ,
[[6.0, 2.9, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[5.7, 2.6, 3.5, 1.0], [0], ['Iris-versicolor']] ,
[[5.5, 2.4, 3.8, 1.1], [0], ['Iris-versicolor']] ,
[[5.5, 2.4, 3.7, 1.0], [0], ['Iris-versicolor']] ,
[[5.8, 2.7, 3.9, 1.2], [0], ['Iris-versicolor']] ,
[[6.0, 2.7, 5.1, 1.6], [0], ['Iris-versicolor']] ,
[[5.4, 3.0, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[6.0, 3.4, 4.5, 1.6], [0], ['Iris-versicolor']] ,
[[6.7, 3.1, 4.7, 1.5], [0], ['Iris-versicolor']] ,
[[6.3, 2.3, 4.4, 1.3], [0], ['Iris-versicolor']] ,
[[5.6, 3.0, 4.1, 1.3], [0], ['Iris-versicolor']] ,
[[6.1, 3.0, 4.6, 1.4], [0], ['Iris-versicolor']] ,
[[5.8, 2.6, 4.0, 1.2], [0], ['Iris-versicolor']] ,
[[5.0, 2.3, 3.3, 1.0], [0], ['Iris-versicolor']] ,
[[5.6, 2.7, 4.2, 1.3], [0], ['Iris-versicolor']] ,
[[5.7, 3.0, 4.2, 1.2], [0], ['Iris-versicolor']] ,
[[5.7, 2.9, 4.2, 1.3], [0], ['Iris-versicolor']] ,
[[6.2, 2.9, 4.3, 1.3], [0], ['Iris-versicolor']] ,
[[5.1, 2.5, 3.0, 1.1], [0], ['Iris-versicolor']] ,
[[5.7, 2.8, 4.1, 1.3], [0], ['Iris-versicolor']] ,
[[6.3, 3.3, 6.0, 2.5], [1], ['Iris-virginica']] ,
[[5.8, 2.7, 5.1, 1.9], [1], ['Iris-virginica']] ,
[[7.1, 3.0, 5.9, 2.1], [1], ['Iris-virginica']] ,
[[6.3, 2.9, 5.6, 1.8], [1], ['Iris-virginica']] ,
[[6.5, 3.0, 5.8, 2.2], [1], ['Iris-virginica']] ,
[[7.6, 3.0, 6.6, 2.1], [1], ['Iris-virginica']] ,
[[4.9, 2.5, 4.5, 1.7], [1], ['Iris-virginica']] ,
[[7.3, 2.9, 6.3, 1.8], [1], ['Iris-virginica']] ,
[[6.7, 2.5, 5.8, 1.8], [1], ['Iris-virginica']] ,
[[7.2, 3.6, 6.1, 2.5], [1], ['Iris-virginica']] ,
[[6.5, 3.2, 5.1, 2.0], [1], ['Iris-virginica']] ,
[[6.4, 2.7, 5.3, 1.9], [1], ['Iris-virginica']] ,
[[6.8, 3.0, 5.5, 2.1], [1], ['Iris-virginica']] ,
[[5.7, 2.5, 5.0, 2.0], [1], ['Iris-virginica']] ,
[[5.8, 2.8, 5.1, 2.4], [1], ['Iris-virginica']] ,
[[7.7, 3.8, 6.7, 2.2], [1], ['Iris-virginica']] ,
[[7.7, 2.6, 6.9, 2.3], [1], ['Iris-virginica']] ,
[[6.0, 2.2, 5.0, 1.5], [1], ['Iris-virginica']] ,
[[6.9, 3.2, 5.7, 2.3], [1], ['Iris-virginica']] ,
[[5.6, 2.8, 4.9, 2.0], [1], ['Iris-virginica']] ,
[[7.7, 2.8, 6.7, 2.0], [1], ['Iris-virginica']] ,
[[6.3, 2.7, 4.9, 1.8], [1], ['Iris-virginica']] ,
[[6.7, 3.3, 5.7, 2.1], [1], ['Iris-virginica']] ,
[[7.2, 3.2, 6.0, 1.8], [1], ['Iris-virginica']] ,
[[6.2, 2.8, 4.8, 1.8], [1], ['Iris-virginica']] ,
[[6.1, 3.0, 4.9, 1.8], [1], ['Iris-virginica']] ,
[[6.4, 2.8, 5.6, 2.1], [1], ['Iris-virginica']] ,
[[7.2, 3.0, 5.8, 1.6], [1], ['Iris-virginica']] ,
[[7.4, 2.8, 6.1, 1.9], [1], ['Iris-virginica']] ,
[[7.9, 3.8, 6.4, 2.0], [1], ['Iris-virginica']] ,
[[6.4, 2.8, 5.6, 2.2], [1], ['Iris-virginica']] ,
[[6.3, 2.8, 5.1, 1.5], [1], ['Iris-virginica']] ,
[[6.1, 2.6, 5.6, 1.4], [1], ['Iris-virginica']] ,
[[7.7, 3.0, 6.1, 2.3], [1], ['Iris-virginica']] ,
[[6.3, 3.4, 5.6, 2.4], [1], ['Iris-virginica']] ,
[[6.4, 3.1, 5.5, 1.8], [1], ['Iris-virginica']] ,
[[6.0, 3.0, 4.8, 1.8], [1], ['Iris-virginica']] ,
[[6.9, 3.1, 5.4, 2.1], [1], ['Iris-virginica']] ,
[[6.7, 3.1, 5.6, 2.4], [1], ['Iris-virginica']] ,
[[6.9, 3.1, 5.1, 2.3], [1], ['Iris-virginica']] ,
[[5.8, 2.7, 5.1, 1.9], [1], ['Iris-virginica']] ,
[[6.8, 3.2, 5.9, 2.3], [1], ['Iris-virginica']] ,
[[6.7, 3.3, 5.7, 2.5], [1], ['Iris-virginica']] ,
[[6.7, 3.0, 5.2, 2.3], [1], ['Iris-virginica']] ,
[[6.3, 2.5, 5.0, 1.9], [1], ['Iris-virginica']] ,
[[6.5, 3.0, 5.2, 2.0], [1], ['Iris-virginica']] ,
[[6.2, 3.4, 5.4, 2.3], [1], ['Iris-virginica']] ,
[[5.9, 3.0, 5.1, 1.8], [1], ['Iris-virginica']]
]
testpat = [
[[5.1, 3.5, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.9, 3.0, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.7, 3.2, 1.3, 0.2], [-1], ['Iris-setosa']] ,
[[5.4, 3.9, 1.7, 0.4], [-1], ['Iris-setosa']] ,
[[4.6, 3.4, 1.4, 0.3], [-1], ['Iris-setosa']] ,
[[5.0, 3.4, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[4.4, 2.9, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.9, 3.1, 1.5, 0.1], [-1], ['Iris-setosa']] ,
[[5.4, 3.7, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[4.8, 3.4, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[4.8, 3.0, 1.4, 0.1], [-1], ['Iris-setosa']] ,
[[4.3, 3.0, 1.1, 0.1], [-1], ['Iris-setosa']] ,
[[5.8, 4.0, 1.2, 0.2], [-1], ['Iris-setosa']] ,
[[5.7, 4.4, 1.5, 0.4], [-1], ['Iris-setosa']] ,
[[5.4, 3.9, 1.3, 0.4], [-1], ['Iris-setosa']] ,
[[5.1, 3.5, 1.4, 0.3], [-1], ['Iris-setosa']] ,
[[5.7, 3.8, 1.7, 0.3], [-1], ['Iris-setosa']] ,
[[5.1, 3.8, 1.5, 0.3], [-1], ['Iris-setosa']] ,
[[5.4, 3.4, 1.7, 0.2], [-1], ['Iris-setosa']] ,
[[5.1, 3.7, 1.5, 0.4], [-1], ['Iris-setosa']] ,
[[4.6, 3.6, 1.0, 0.2], [-1], ['Iris-setosa']] ,
[[5.1, 3.3, 1.7, 0.5], [-1], ['Iris-setosa']] ,
[[4.8, 3.4, 1.9, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.0, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.4, 1.6, 0.4], [-1], ['Iris-setosa']] ,
[[5.2, 3.5, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[5.2, 3.4, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.7, 3.2, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[4.8, 3.1, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[5.4, 3.4, 1.5, 0.4], [-1], ['Iris-setosa']] ,
[[5.2, 4.1, 1.5, 0.1], [-1], ['Iris-setosa']] ,
[[5.5, 4.2, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[4.9, 3.1, 1.5, 0.1], [-1], ['Iris-setosa']] ,
[[5.0, 3.2, 1.2, 0.2], [-1], ['Iris-setosa']] ,
[[5.5, 3.5, 1.3, 0.2], [-1], ['Iris-setosa']] ,
[[4.9, 3.1, 1.5, 0.1], [-1], ['Iris-setosa']] ,
[[4.4, 3.0, 1.3, 0.2], [-1], ['Iris-setosa']] ,
[[5.1, 3.4, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.5, 1.3, 0.3], [-1], ['Iris-setosa']] ,
[[4.5, 2.3, 1.3, 0.3], [-1], ['Iris-setosa']] ,
[[4.4, 3.2, 1.3, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.5, 1.6, 0.6], [-1], ['Iris-setosa']] ,
[[5.1, 3.8, 1.9, 0.4], [-1], ['Iris-setosa']] ,
[[4.8, 3.0, 1.4, 0.3], [-1], ['Iris-setosa']] ,
[[5.1, 3.8, 1.6, 0.2], [-1], ['Iris-setosa']] ,
[[4.6, 3.2, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[5.3, 3.7, 1.5, 0.2], [-1], ['Iris-setosa']] ,
[[5.0, 3.3, 1.4, 0.2], [-1], ['Iris-setosa']] ,
[[7.0, 3.2, 4.7, 1.4], [0], ['Iris-versicolor']] ,
[[6.4, 3.2, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[6.9, 3.1, 4.9, 1.5], [0], ['Iris-versicolor']] ,
[[5.5, 2.3, 4.0, 1.3], [0], ['Iris-versicolor']] ,
[[6.5, 2.8, 4.6, 1.5], [0], ['Iris-versicolor']] ,
[[5.7, 2.8, 4.5, 1.3], [0], ['Iris-versicolor']] ,
[[6.3, 3.3, 4.7, 1.6], [0], ['Iris-versicolor']] ,
[[4.9, 2.4, 3.3, 1.0], [0], ['Iris-versicolor']] ,
[[6.6, 2.9, 4.6, 1.3], [0], ['Iris-versicolor']] ,
[[5.2, 2.7, 3.9, 1.4], [0], ['Iris-versicolor']] ,
[[5.0, 2.0, 3.5, 1.0], [0], ['Iris-versicolor']] ,
[[5.9, 3.0, 4.2, 1.5], [0], ['Iris-versicolor']] ,
[[6.0, 2.2, 4.0, 1.0], [0], ['Iris-versicolor']] ,
[[6.1, 2.9, 4.7, 1.4], [0], ['Iris-versicolor']] ,
[[5.6, 2.9, 3.6, 1.3], [0], ['Iris-versicolor']] ,
[[6.7, 3.1, 4.4, 1.4], [0], ['Iris-versicolor']] ,
[[5.6, 3.0, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[5.8, 2.7, 4.1, 1.0], [0], ['Iris-versicolor']] ,
[[6.2, 2.2, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[5.6, 2.5, 3.9, 1.1], [0], ['Iris-versicolor']] ,
[[5.9, 3.2, 4.8, 1.8], [0], ['Iris-versicolor']] ,
[[6.1, 2.8, 4.0, 1.3], [0], ['Iris-versicolor']] ,
[[6.3, 2.5, 4.9, 1.5], [0], ['Iris-versicolor']] ,
[[6.1, 2.8, 4.7, 1.2], [0], ['Iris-versicolor']] ,
[[6.4, 2.9, 4.3, 1.3], [0], ['Iris-versicolor']] ,
[[6.6, 3.0, 4.4, 1.4], [0], ['Iris-versicolor']] ,
[[6.8, 2.8, 4.8, 1.4], [0], ['Iris-versicolor']] ,
[[6.7, 3.0, 5.0, 1.7], [0], ['Iris-versicolor']] ,
[[6.0, 2.9, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[5.7, 2.6, 3.5, 1.0], [0], ['Iris-versicolor']] ,
[[5.5, 2.4, 3.8, 1.1], [0], ['Iris-versicolor']] ,
[[5.5, 2.4, 3.7, 1.0], [0], ['Iris-versicolor']] ,
[[5.8, 2.7, 3.9, 1.2], [0], ['Iris-versicolor']] ,
[[6.0, 2.7, 5.1, 1.6], [0], ['Iris-versicolor']] ,
[[5.4, 3.0, 4.5, 1.5], [0], ['Iris-versicolor']] ,
[[6.0, 3.4, 4.5, 1.6], [0], ['Iris-versicolor']] ,
[[6.7, 3.1, 4.7, 1.5], [0], ['Iris-versicolor']] ,
[[6.3, 2.3, 4.4, 1.3], [0], ['Iris-versicolor']] ,
[[5.6, 3.0, 4.1, 1.3], [0], ['Iris-versicolor']] ,
[[6.1, 3.0, 4.6, 1.4], [0], ['Iris-versicolor']] ,
[[5.8, 2.6, 4.0, 1.2], [0], ['Iris-versicolor']] ,
[[5.0, 2.3, 3.3, 1.0], [0], ['Iris-versicolor']] ,
[[5.6, 2.7, 4.2, 1.3], [0], ['Iris-versicolor']] ,
[[5.7, 3.0, 4.2, 1.2], [0], ['Iris-versicolor']] ,
[[5.7, 2.9, 4.2, 1.3], [0], ['Iris-versicolor']] ,
[[6.2, 2.9, 4.3, 1.3], [0], ['Iris-versicolor']] ,
[[5.1, 2.5, 3.0, 1.1], [0], ['Iris-versicolor']] ,
[[5.7, 2.8, 4.1, 1.3], [0], ['Iris-versicolor']] ,
[[6.3, 3.3, 6.0, 2.5], [1], ['Iris-virginica']] ,
[[5.8, 2.7, 5.1, 1.9], [1], ['Iris-virginica']] ,
[[7.1, 3.0, 5.9, 2.1], [1], ['Iris-virginica']] ,
[[6.3, 2.9, 5.6, 1.8], [1], ['Iris-virginica']] ,
[[6.5, 3.0, 5.8, 2.2], [1], ['Iris-virginica']] ,
[[7.6, 3.0, 6.6, 2.1], [1], ['Iris-virginica']] ,
[[4.9, 2.5, 4.5, 1.7], [1], ['Iris-virginica']] ,
[[7.3, 2.9, 6.3, 1.8], [1], ['Iris-virginica']] ,
[[6.7, 2.5, 5.8, 1.8], [1], ['Iris-virginica']] ,
[[7.2, 3.6, 6.1, 2.5], [1], ['Iris-virginica']] ,
[[6.5, 3.2, 5.1, 2.0], [1], ['Iris-virginica']] ,
[[6.4, 2.7, 5.3, 1.9], [1], ['Iris-virginica']] ,
[[6.8, 3.0, 5.5, 2.1], [1], ['Iris-virginica']] ,
[[5.7, 2.5, 5.0, 2.0], [1], ['Iris-virginica']] ,
[[5.8, 2.8, 5.1, 2.4], [1], ['Iris-virginica']] ,
[[7.7, 3.8, 6.7, 2.2], [1], ['Iris-virginica']] ,
[[7.7, 2.6, 6.9, 2.3], [1], ['Iris-virginica']] ,
[[6.0, 2.2, 5.0, 1.5], [1], ['Iris-virginica']] ,
[[6.9, 3.2, 5.7, 2.3], [1], ['Iris-virginica']] ,
[[5.6, 2.8, 4.9, 2.0], [1], ['Iris-virginica']] ,
[[7.7, 2.8, 6.7, 2.0], [1], ['Iris-virginica']] ,
[[6.3, 2.7, 4.9, 1.8], [1], ['Iris-virginica']] ,
[[6.7, 3.3, 5.7, 2.1], [1], ['Iris-virginica']] ,
[[7.2, 3.2, 6.0, 1.8], [1], ['Iris-virginica']] ,
[[6.2, 2.8, 4.8, 1.8], [1], ['Iris-virginica']] ,
[[6.1, 3.0, 4.9, 1.8], [1], ['Iris-virginica']] ,
[[6.4, 2.8, 5.6, 2.1], [1], ['Iris-virginica']] ,
[[7.2, 3.0, 5.8, 1.6], [1], ['Iris-virginica']] ,
[[7.4, 2.8, 6.1, 1.9], [1], ['Iris-virginica']] ,
[[7.9, 3.8, 6.4, 2.0], [1], ['Iris-virginica']] ,
[[6.4, 2.8, 5.6, 2.2], [1], ['Iris-virginica']] ,
[[6.3, 2.8, 5.1, 1.5], [1], ['Iris-virginica']] ,
[[6.1, 2.6, 5.6, 1.4], [1], ['Iris-virginica']] ,
[[7.7, 3.0, 6.1, 2.3], [1], ['Iris-virginica']] ,
[[6.3, 3.4, 5.6, 2.4], [1], ['Iris-virginica']] ,
[[6.4, 3.1, 5.5, 1.8], [1], ['Iris-virginica']] ,
[[6.0, 3.0, 4.8, 1.8], [1], ['Iris-virginica']] ,
[[6.9, 3.1, 5.4, 2.1], [1], ['Iris-virginica']] ,
[[6.7, 3.1, 5.6, 2.4], [1], ['Iris-virginica']] ,
[[6.9, 3.1, 5.1, 2.3], [1], ['Iris-virginica']] ,
[[5.8, 2.7, 5.1, 1.9], [1], ['Iris-virginica']] ,
[[6.8, 3.2, 5.9, 2.3], [1], ['Iris-virginica']] ,
[[6.7, 3.3, 5.7, 2.5], [1], ['Iris-virginica']] ,
[[6.7, 3.0, 5.2, 2.3], [1], ['Iris-virginica']] ,
[[6.3, 2.5, 5.0, 1.9], [1], ['Iris-virginica']] ,
[[6.5, 3.0, 5.2, 2.0], [1], ['Iris-virginica']] ,
[[6.2, 3.4, 5.4, 2.3], [1], ['Iris-virginica']] ,
[[5.9, 3.0, 5.1, 1.8], [1], ['Iris-virginica']]
]
|
This doesn't work for me. I get an error in sumError about pat not being defined globally.