Python script that performs hierarchical clustering (scipy) on an input tab-delimited text file (command-line) along with optional column and row clustering parameters or color gradients for heatmap visualization (matplotlib). Designed particularly for transcriptome data clustering and data analyses (e.g., microarray or RNA-Seq). For example: $python hierarchical_clustering.py --i /Users/me/logfolds.txt
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 | ### hierarchical_clustering.py
#Copyright 2005-2012 J. David Gladstone Institutes, San Francisco California
#Author Nathan Salomonis - nsalomonis@gmail.com
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is furnished
#to do so, subject to the following conditions:
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
#INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
#PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
#OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#################
### Imports an tab-delimited expression matrix and produces and hierarchically clustered heatmap
#################
import matplotlib.pyplot as pylab
from matplotlib import mpl
import scipy
import scipy.cluster.hierarchy as sch
import scipy.spatial.distance as dist
import numpy
import string
import time
import sys, os
import getopt
################# Perform the hierarchical clustering #################
def heatmap(x, row_header, column_header, row_method,
column_method, row_metric, column_metric,
color_gradient, filename):
print "\nPerforming hiearchical clustering using %s for columns and %s for rows" % (column_metric,row_metric)
"""
This below code is based in large part on the protype methods:
http://old.nabble.com/How-to-plot-heatmap-with-matplotlib--td32534593.html
http://stackoverflow.com/questions/7664826/how-to-get-flat-clustering-corresponding-to-color-clusters-in-the-dendrogram-cre
x is an m by n ndarray, m observations, n genes
"""
### Define the color gradient to use based on the provided name
n = len(x[0]); m = len(x)
if color_gradient == 'red_white_blue':
cmap=pylab.cm.bwr
if color_gradient == 'red_black_sky':
cmap=RedBlackSkyBlue()
if color_gradient == 'red_black_blue':
cmap=RedBlackBlue()
if color_gradient == 'red_black_green':
cmap=RedBlackGreen()
if color_gradient == 'yellow_black_blue':
cmap=YellowBlackBlue()
if color_gradient == 'seismic':
cmap=pylab.cm.seismic
if color_gradient == 'green_white_purple':
cmap=pylab.cm.PiYG_r
if color_gradient == 'coolwarm':
cmap=pylab.cm.coolwarm
### Scale the max and min colors so that 0 is white/black
vmin=x.min()
vmax=x.max()
vmax = max([vmax,abs(vmin)])
vmin = vmax*-1
norm = mpl.colors.Normalize(vmin/2, vmax/2) ### adjust the max and min to scale these colors
### Scale the Matplotlib window size
default_window_hight = 8.5
default_window_width = 12
fig = pylab.figure(figsize=(default_window_width,default_window_hight)) ### could use m,n to scale here
color_bar_w = 0.015 ### Sufficient size to show
## calculate positions for all elements
# ax1, placement of dendrogram 1, on the left of the heatmap
#if row_method != None: w1 =
[ax1_x, ax1_y, ax1_w, ax1_h] = [0.05,0.22,0.2,0.6] ### The second value controls the position of the matrix relative to the bottom of the view
width_between_ax1_axr = 0.004
height_between_ax1_axc = 0.004 ### distance between the top color bar axis and the matrix
# axr, placement of row side colorbar
[axr_x, axr_y, axr_w, axr_h] = [0.31,0.1,color_bar_w,0.6] ### second to last controls the width of the side color bar - 0.015 when showing
axr_x = ax1_x + ax1_w + width_between_ax1_axr
axr_y = ax1_y; axr_h = ax1_h
width_between_axr_axm = 0.004
# axc, placement of column side colorbar
[axc_x, axc_y, axc_w, axc_h] = [0.4,0.63,0.5,color_bar_w] ### last one controls the hight of the top color bar - 0.015 when showing
axc_x = axr_x + axr_w + width_between_axr_axm
axc_y = ax1_y + ax1_h + height_between_ax1_axc
height_between_axc_ax2 = 0.004
# axm, placement of heatmap for the data matrix
[axm_x, axm_y, axm_w, axm_h] = [0.4,0.9,2.5,0.5]
axm_x = axr_x + axr_w + width_between_axr_axm
axm_y = ax1_y; axm_h = ax1_h
axm_w = axc_w
# ax2, placement of dendrogram 2, on the top of the heatmap
[ax2_x, ax2_y, ax2_w, ax2_h] = [0.3,0.72,0.6,0.15] ### last one controls hight of the dendrogram
ax2_x = axr_x + axr_w + width_between_axr_axm
ax2_y = ax1_y + ax1_h + height_between_ax1_axc + axc_h + height_between_axc_ax2
ax2_w = axc_w
# axcb - placement of the color legend
[axcb_x, axcb_y, axcb_w, axcb_h] = [0.07,0.88,0.18,0.09]
# Compute and plot top dendrogram
if column_method != None:
start_time = time.time()
d2 = dist.pdist(x.T)
D2 = dist.squareform(d2)
ax2 = fig.add_axes([ax2_x, ax2_y, ax2_w, ax2_h], frame_on=True)
Y2 = sch.linkage(D2, method=column_method, metric=column_metric) ### array-clustering metric - 'average', 'single', 'centroid', 'complete'
Z2 = sch.dendrogram(Y2)
ind2 = sch.fcluster(Y2,0.7*max(Y2[:,2]),'distance') ### This is the default behavior of dendrogram
ax2.set_xticks([]) ### Hides ticks
ax2.set_yticks([])
time_diff = str(round(time.time()-start_time,1))
print 'Column clustering completed in %s seconds' % time_diff
else:
ind2 = ['NA']*len(column_header) ### Used for exporting the flat cluster data
# Compute and plot left dendrogram.
if row_method != None:
start_time = time.time()
d1 = dist.pdist(x)
D1 = dist.squareform(d1) # full matrix
ax1 = fig.add_axes([ax1_x, ax1_y, ax1_w, ax1_h], frame_on=True) # frame_on may be False
Y1 = sch.linkage(D1, method=row_method, metric=row_metric) ### gene-clustering metric - 'average', 'single', 'centroid', 'complete'
Z1 = sch.dendrogram(Y1, orientation='right')
ind1 = sch.fcluster(Y1,0.7*max(Y1[:,2]),'distance') ### This is the default behavior of dendrogram
ax1.set_xticks([]) ### Hides ticks
ax1.set_yticks([])
time_diff = str(round(time.time()-start_time,1))
print 'Row clustering completed in %s seconds' % time_diff
else:
ind1 = ['NA']*len(row_header) ### Used for exporting the flat cluster data
# Plot distance matrix.
axm = fig.add_axes([axm_x, axm_y, axm_w, axm_h]) # axes for the data matrix
xt = x
if column_method != None:
idx2 = Z2['leaves'] ### apply the clustering for the array-dendrograms to the actual matrix data
xt = xt[:,idx2]
ind2 = ind2[:,idx2] ### reorder the flat cluster to match the order of the leaves the dendrogram
if row_method != None:
idx1 = Z1['leaves'] ### apply the clustering for the gene-dendrograms to the actual matrix data
xt = xt[idx1,:] # xt is transformed x
ind1 = ind1[idx1,:] ### reorder the flat cluster to match the order of the leaves the dendrogram
### taken from http://stackoverflow.com/questions/2982929/plotting-results-of-hierarchical-clustering-ontop-of-a-matrix-of-data-in-python/3011894#3011894
im = axm.matshow(xt, aspect='auto', origin='lower', cmap=cmap, norm=norm) ### norm=norm added to scale coloring of expression with zero = white or black
axm.set_xticks([]) ### Hides x-ticks
axm.set_yticks([])
# Add text
new_row_header=[]
new_column_header=[]
for i in range(x.shape[0]):
if row_method != None:
if len(row_header)<100: ### Don't visualize gene associations when more than 100 rows
axm.text(x.shape[1]-0.5, i, ' '+row_header[idx1[i]])
new_row_header.append(row_header[idx1[i]])
else:
if len(row_header)<100: ### Don't visualize gene associations when more than 100 rows
axm.text(x.shape[1]-0.5, i, ' '+row_header[i]) ### When not clustering rows
new_row_header.append(row_header[i])
for i in range(x.shape[1]):
if column_method != None:
axm.text(i, -0.9, ' '+column_header[idx2[i]], rotation=270, verticalalignment="top") # rotation could also be degrees
new_column_header.append(column_header[idx2[i]])
else: ### When not clustering columns
axm.text(i, -0.9, ' '+column_header[i], rotation=270, verticalalignment="top")
new_column_header.append(column_header[i])
# Plot colside colors
# axc --> axes for column side colorbar
if column_method != None:
axc = fig.add_axes([axc_x, axc_y, axc_w, axc_h]) # axes for column side colorbar
cmap_c = mpl.colors.ListedColormap(['r', 'g', 'b', 'y', 'w', 'k', 'm'])
dc = numpy.array(ind2, dtype=int)
dc.shape = (1,len(ind2))
im_c = axc.matshow(dc, aspect='auto', origin='lower', cmap=cmap_c)
axc.set_xticks([]) ### Hides ticks
axc.set_yticks([])
# Plot rowside colors
# axr --> axes for row side colorbar
if row_method != None:
axr = fig.add_axes([axr_x, axr_y, axr_w, axr_h]) # axes for column side colorbar
dr = numpy.array(ind1, dtype=int)
dr.shape = (len(ind1),1)
#print ind1, len(ind1)
cmap_r = mpl.colors.ListedColormap(['r', 'g', 'b', 'y', 'w', 'k', 'm'])
im_r = axr.matshow(dr, aspect='auto', origin='lower', cmap=cmap_r)
axr.set_xticks([]) ### Hides ticks
axr.set_yticks([])
# Plot color legend
axcb = fig.add_axes([axcb_x, axcb_y, axcb_w, axcb_h], frame_on=False) # axes for colorbar
cb = mpl.colorbar.ColorbarBase(axcb, cmap=cmap, norm=norm, orientation='horizontal')
axcb.set_title("colorkey")
if '/' in filename:
dataset_name = string.split(filename,'/')[-1][:-4]
root_dir = string.join(string.split(filename,'/')[:-1],'/')+'/'
else:
dataset_name = string.split(filename,'\\')[-1][:-4]
root_dir = string.join(string.split(filename,'\\')[:-1],'\\')+'\\'
filename = root_dir+'Clustering-%s-hierarchical_%s_%s.pdf' % (dataset_name,column_metric,row_metric)
cb.set_label("Differential Expression (log2 fold)")
exportFlatClusterData(filename, new_row_header,new_column_header,xt,ind1,ind2)
### Render the graphic
if len(row_header)>50 or len(column_header)>50:
pylab.rcParams['font.size'] = 5
else:
pylab.rcParams['font.size'] = 8
pylab.savefig(filename)
print 'Exporting:',filename
filename = filename[:-3]+'png'
pylab.savefig(filename, dpi=100) #,dpi=200
pylab.show()
def getColorRange(x):
""" Determines the range of colors, centered at zero, for normalizing cmap """
vmax=x.max()
vmin=x.min()
if vmax<0 and vmin<0: direction = 'negative'
elif vmax>0 and vmin>0: direction = 'positive'
else: direction = 'both'
if direction == 'both':
vmax = max([vmax,abs(vmin)])
vmin = -1*vmax
return vmax,vmin
else:
return vmax,vmin
################# Export the flat cluster data #################
def exportFlatClusterData(filename, new_row_header,new_column_header,xt,ind1,ind2):
""" Export the clustered results as a text file, only indicating the flat-clusters rather than the tree """
filename = string.replace(filename,'.pdf','.txt')
export_text = open(filename,'w')
column_header = string.join(['UID','row_clusters-flat']+new_column_header,'\t')+'\n' ### format column-names for export
export_text.write(column_header)
column_clusters = string.join(['column_clusters-flat','']+ map(str, ind2),'\t')+'\n' ### format column-flat-clusters for export
export_text.write(column_clusters)
### The clusters, dendrogram and flat clusters are drawn bottom-up, so we need to reverse the order to match
new_row_header = new_row_header[::-1]
xt = xt[::-1]
### Export each row in the clustered data matrix xt
i=0
for row in xt:
export_text.write(string.join([new_row_header[i],str(ind1[i])]+map(str, row),'\t')+'\n')
i+=1
export_text.close()
### Export as CDT file
filename = string.replace(filename,'.txt','.cdt')
export_cdt = open(filename,'w')
column_header = string.join(['UNIQID','NAME','GWEIGHT']+new_column_header,'\t')+'\n' ### format column-names for export
export_cdt.write(column_header)
eweight = string.join(['EWEIGHT','','']+ ['1']*len(new_column_header),'\t')+'\n' ### format column-flat-clusters for export
export_cdt.write(eweight)
### Export each row in the clustered data matrix xt
i=0
for row in xt:
export_cdt.write(string.join([new_row_header[i]]*2+['1']+map(str, row),'\t')+'\n')
i+=1
export_cdt.close()
################# Create Custom Color Gradients #################
#http://matplotlib.sourceforge.net/examples/pylab_examples/custom_cmap.html
def RedBlackSkyBlue():
cdict = {'red': ((0.0, 0.0, 0.0),
(0.5, 0.0, 0.1),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.9),
(0.5, 0.1, 0.0),
(1.0, 0.0, 0.0)),
'blue': ((0.0, 0.0, 1.0),
(0.5, 0.1, 0.0),
(1.0, 0.0, 0.0))
}
my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap',cdict,256)
return my_cmap
def RedBlackBlue():
cdict = {'red': ((0.0, 0.0, 0.0),
(0.5, 0.0, 0.1),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.0),
(1.0, 0.0, 0.0)),
'blue': ((0.0, 0.0, 1.0),
(0.5, 0.1, 0.0),
(1.0, 0.0, 0.0))
}
my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap',cdict,256)
return my_cmap
def RedBlackGreen():
cdict = {'red': ((0.0, 0.0, 0.0),
(0.5, 0.0, 0.1),
(1.0, 1.0, 1.0)),
'blue': ((0.0, 0.0, 0.0),
(1.0, 0.0, 0.0)),
'green': ((0.0, 0.0, 1.0),
(0.5, 0.1, 0.0),
(1.0, 0.0, 0.0))
}
my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap',cdict,256)
return my_cmap
def YellowBlackBlue():
cdict = {'red': ((0.0, 0.0, 0.0),
(0.5, 0.0, 0.1),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.8),
(0.5, 0.1, 0.0),
(1.0, 1.0, 1.0)),
'blue': ((0.0, 0.0, 1.0),
(0.5, 0.1, 0.0),
(1.0, 0.0, 0.0))
}
### yellow is created by adding y = 1 to RedBlackSkyBlue green last tuple
### modulate between blue and cyan using the last y var in the first green tuple
my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap',cdict,256)
return my_cmap
################# General data import methods #################
def importData(filename):
start_time = time.time()
matrix=[]
row_header=[]
first_row=True
if '/' in filename:
dataset_name = string.split(filename,'/')[-1][:-4]
else:
dataset_name = string.split(filename,'\\')[-1][:-4]
for line in open(filename,'rU').xreadlines():
t = string.split(line[:-1],'\t') ### remove end-of-line character - file is tab-delimited
if first_row:
column_header = t[1:]
first_row=False
else:
if ' ' not in t and '' not in t: ### Occurs for rows with missing data
s = map(float,t[1:])
if (abs(max(s)-min(s)))>0:
matrix.append(s)
row_header.append(t[0])
time_diff = str(round(time.time()-start_time,1))
try:
print '\n%d rows and %d columns imported for %s in %s seconds...' % (len(matrix),len(column_header),dataset_name,time_diff)
except Exception:
print 'No data in input file.'; force_error
return numpy.array(matrix), column_header, row_header
if __name__ == '__main__':
################ Default Methods ################
row_method = 'average'
column_method = 'single'
row_metric = 'cityblock' #cosine
column_metric = 'euclidean'
color_gradient = 'red_white_blue'
""" Running with cosine or other distance metrics can often produce negative Z scores
during clustering, so adjustments to the clustering may be required.
see: http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
see: http://docs.scipy.org/doc/scipy/reference/spatial.distance.htm
color_gradient = red_white_blue|red_black_sky|red_black_blue|red_black_green|yellow_black_blue|green_white_purple'
"""
################ Comand-line arguments ################
if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments
print "Warning! Please designate a tab-delimited input expression file in the command-line"
print "Example: python hierarchical_clustering.py --i /Users/me/logfolds.txt"
sys.exit()
else:
options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','row_header','column_method',
'row_metric','column_metric','color_gradient'])
for opt, arg in options:
if opt == '--i': filename=arg
elif opt == '--row_header': row_header=arg
elif opt == '--column_method': column_method=arg
elif opt == '--row_metric': row_metric=arg
elif opt == '--column_metric': column_metric=arg
elif opt == '--color_gradient': color_gradient=arg
else:
print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit()
matrix, column_header, row_header = importData(filename)
if len(matrix)>0:
try:
heatmap(matrix, row_header, column_header, row_method, column_method, row_metric, column_metric, color_gradient, filename)
except Exception:
print 'Error using %s ... trying euclidean instead' % row_metric
row_metric = 'euclidean'
try:
heatmap(matrix, row_header, column_header, row_method, column_method, row_metric, column_metric, color_gradient, filename)
except IOError:
print 'Error with clustering encountered'
|
A common use case for biologists analyzing their gene expression data is to cluster and visualize patterns of expression in the form of a heatmap and associated dendrogram. This stand-alone code allows someone to both cluster and visualize a text file containing positive and negative values and instantly view the results. A PDF and PNG file of the cluster are automatically saved to the directory containing the input expression file. Also useful for integrating into various analysis packages.