The algorithm uses the priority queue version of Dijkstra and return the distance between the source node and the others nodes d(s,i).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import heapq as hq
inf = float('Inf')
def dijkstra(G, s):
n = len(G)
Q = [(0, s)]
d = [inf for i in range(n)]
d[s]=0
while len(Q)!=0:
(cost, u) = hq.heappop(Q)
for v in range(n):
if d[v] > d[u] + G[u][v]:
d[v] = d[u] + G[u][v]
hq.heappush(Q, (d[v], v))
return d
G = [\
[0.0, 1.0, 3.0, inf],\
[1.0, 0.0, 1.0, 4.0],\
[3.0, 1.0, 0.0, 2.0],\
[inf, 4.0, 2.0, 0.0]]
d = dijkstra(G, 0)
|
Tags: graph