A simple genetic algorithm program. I followed this tutorial to make the program http://www.ai-junkie.com/ga/intro/gat1.html.
The objective of the code is to evolve a mathematical expression which calculates a user-defined target integer.
KEY:
chromosome = binary list (this is translated/decoded into a protein in the format number --> operator --> number etc, any genes (chromosome is read in blocks of four) which do not conform to this are ignored.
protein = mathematical expression (this is evaluated from left to right in number + operator blocks of two)
output = output of protein (mathematical expression)
error = inverse of difference between output and target
fitness score = a fraction of sum of of total errors
OTHER:
One-point crossover is used.
I have incorporated elitism in my code, which somewhat deviates from the tutorial but made my code more efficient (top ~7% of population are carried through to next generation)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | from operator import itemgetter, attrgetter
import random
import sys
import os
import math
import re
# GLOBAL VARIABLES
genetic_code = {
'0000':'0',
'0001':'1',
'0010':'2',
'0011':'3',
'0100':'4',
'0101':'5',
'0110':'6',
'0111':'7',
'1000':'8',
'1001':'9',
'1010':'+',
'1011':'-',
'1100':'*',
'1101':'/'
}
solution_found = False
popN = 100 # n number of chromos per population
genesPerCh = 75
max_iterations = 1000
target = 1111.0
crossover_rate = 0.7
mutation_rate = 0.05
"""Generates random population of chromos"""
def generatePop ():
chromos, chromo = [], []
for eachChromo in range(popN):
chromo = []
for bit in range(genesPerCh * 4):
chromo.append(random.randint(0,1))
chromos.append(chromo)
return chromos
"""Takes a binary list (chromo) and returns a protein (mathematical expression in string)"""
def translate (chromo):
protein, chromo_string = '',''
need_int = True
a, b = 0, 4 # ie from point a to point b (start to stop point in string)
for bit in chromo:
chromo_string += str(bit)
for gene in range(genesPerCh):
if chromo_string[a:b] == '1111' or chromo_string[a:b] == '1110':
continue
elif chromo_string[a:b] != '1010' and chromo_string[a:b] != '1011' and chromo_string[a:b] != '1100' and chromo_string[a:b] != '1101':
if need_int == True:
protein += genetic_code[chromo_string[a:b]]
need_int = False
a += 4
b += 4
continue
else:
a += 4
b += 4
continue
else:
if need_int == False:
protein += genetic_code[chromo_string[a:b]]
need_int = True
a += 4
b += 4
continue
else:
a += 4
b += 4
continue
if len(protein) %2 == 0:
protein = protein[:-1]
return protein
"""Evaluates the mathematical expressions in number + operator blocks of two"""
def evaluate(protein):
a = 3
b = 5
output = -1
lenprotein = len(protein) # i imagine this is quicker than calling len everytime?
if lenprotein == 0:
output = 0
if lenprotein == 1:
output = int(protein)
if lenprotein >= 3:
try :
output = eval(protein[0:3])
except ZeroDivisionError:
output = 0
if lenprotein > 4:
while b != lenprotein+2:
try :
output = eval(str(output)+protein[a:b])
except ZeroDivisionError:
output = 0
a+=2
b+=2
return output
"""Calulates fitness as a fraction of the total fitness"""
def calcFitness (errors):
fitnessScores = []
totalError = sum(errors)
i = 0
# fitness scores are a fraction of the total error
for error in errors:
fitnessScores.append (float(errors[i])/float(totalError))
i += 1
return fitnessScores
def displayFit (error):
bestFitDisplay = 100
dashesN = int(error * bestFitDisplay)
dashes = ''
for j in range(bestFitDisplay-dashesN):
dashes+=' '
for i in range(dashesN):
dashes+='+'
return dashes
"""Takes a population of chromosomes and returns a list of tuples where each chromo is paired to its fitness scores and ranked accroding to its fitness"""
def rankPop (chromos):
proteins, outputs, errors = [], [], []
i = 1
# translate each chromo into mathematical expression (protein), evaluate the output of the expression,
# calculate the inverse error of the output
print '%s: %s\t=%s \t%s %s' %('n'.rjust(5), 'PROTEIN'.rjust(30), 'OUTPUT'.rjust(10), 'INVERSE ERROR'.rjust(17), 'GRAPHICAL INVERSE ERROR'.rjust(105))
for chromo in chromos:
protein = translate(chromo)
proteins.append(protein)
output = evaluate(protein)
outputs.append(output)
try:
error = 1/math.fabs(target-output)
except ZeroDivisionError:
global solution_found
solution_found = True
error = 0
print '\nSOLUTION FOUND'
print '%s: %s \t=%s %s' %(str(i).rjust(5), protein.rjust(30), str(output).rjust(10), displayFit(1.3).rjust(130))
break
else:
#error = 1/math.fabs(target-output)
errors.append(error)
print '%s: %s \t=%s \t%s %s' %(str(i).rjust(5), protein.rjust(30), str(output).rjust(10), str(error).rjust(17), displayFit(error).rjust(105))
i+=1
fitnessScores = calcFitness (errors) # calc fitness scores from the erros calculated
pairedPop = zip ( chromos, proteins, outputs, fitnessScores) # pair each chromo with its protein, ouput and fitness score
rankedPop = sorted ( pairedPop,key = itemgetter(-1), reverse = True ) # sort the paired pop by ascending fitness score
return rankedPop
""" taking a ranked population selects two of the fittest members using roulette method"""
def selectFittest (fitnessScores, rankedChromos):
while 1 == 1: # ensure that the chromosomes selected for breeding are have different indexes in the population
index1 = roulette (fitnessScores)
index2 = roulette (fitnessScores)
if index1 == index2:
continue
else:
break
ch1 = rankedChromos[index1] # select and return chromosomes for breeding
ch2 = rankedChromos[index2]
return ch1, ch2
"""Fitness scores are fractions, their sum = 1. Fitter chromosomes have a larger fraction. """
def roulette (fitnessScores):
index = 0
cumalativeFitness = 0.0
r = random.random()
for i in range(len(fitnessScores)): # for each chromosome's fitness score
cumalativeFitness += fitnessScores[i] # add each chromosome's fitness score to cumalative fitness
if cumalativeFitness > r: # in the event of cumalative fitness becoming greater than r, return index of that chromo
return i
def crossover (ch1, ch2):
# at a random chiasma
r = random.randint(0,genesPerCh*4)
return ch1[:r]+ch2[r:], ch2[:r]+ch1[r:]
def mutate (ch):
mutatedCh = []
for i in ch:
if random.random() < mutation_rate:
if i == 1:
mutatedCh.append(0)
else:
mutatedCh.append(1)
else:
mutatedCh.append(i)
#assert mutatedCh != ch
return mutatedCh
"""Using breed and mutate it generates two new chromos from the selected pair"""
def breed (ch1, ch2):
newCh1, newCh2 = [], []
if random.random() < crossover_rate: # rate dependent crossover of selected chromosomes
newCh1, newCh2 = crossover(ch1, ch2)
else:
newCh1, newCh2 = ch1, ch2
newnewCh1 = mutate (newCh1) # mutate crossovered chromos
newnewCh2 = mutate (newCh2)
return newnewCh1, newnewCh2
""" Taking a ranked population return a new population by breeding the ranked one"""
def iteratePop (rankedPop):
fitnessScores = [ item[-1] for item in rankedPop ] # extract fitness scores from ranked population
rankedChromos = [ item[0] for item in rankedPop ] # extract chromosomes from ranked population
newpop = []
newpop.extend(rankedChromos[:popN/15]) # known as elitism, conserve the best solutions to new population
while len(newpop) != popN:
ch1, ch2 = [], []
ch1, ch2 = selectFittest (fitnessScores, rankedChromos) # select two of the fittest chromos
ch1, ch2 = breed (ch1, ch2) # breed them to create two new chromosomes
newpop.append(ch1) # and append to new population
newpop.append(ch2)
return newpop
def configureSettings ():
configure = raw_input ('T - Enter Target Number \tD - Default settings: ')
match1 = re.search( 't',configure, re.IGNORECASE )
if match1:
global target
target = input('Target int: ' )
def main():
configureSettings ()
chromos = generatePop() #generate new population of random chromosomes
iterations = 0
while iterations != max_iterations and solution_found != True:
# take the pop of random chromos and rank them based on their fitness score/proximity to target output
rankedPop = rankPop(chromos)
print '\nCurrent iterations:', iterations
if solution_found != True:
# if solution is not found iterate a new population from previous ranked population
chromos = []
chromos = iteratePop(rankedPop)
iterations += 1
else:
break
if __name__ == "__main__":
main()
|
I am happy to accept any criticism or comments for improvements.
Sorry that it is a bit littered with tests!
Hi David,
in the selectFitness() function I don't see the need to ensure that the two chromo are different; in fact I feel that this actually hinders the GA from converging + introduces an unneeded bottleneck to the code.
If a self cross is weak the chromo will get weeded out naturally; and if the chromo is strong it will proliferate more quickly than if you didn't allow a self cross.
If you try the following it may improve your results:
Regards Darren.
hi Darren,
Fair point, I haven't tested which one is more efficient but these are the reasons i did it the way i did:
Hii David
How to implement Genetic Algorithm for classifying Biological database which contain DNA string??
HI david, can you help on "python implementation of genetic algorithm for student performance system in lets say computer science department
its a for a final year project, i'd appreciate if you can help out. Thanks
how would oi go about making it so i can visually see the process instead of having it close as soon as it is done?