A method for allocating costs 'fairly' amongst a group of friends who cooperate to their mutual advantage.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | # Author: James Collins
# Purpose: To allocate shares of cost amongst
# a group of friends who benifit by mutual cooperation.
from __future__ import division
from random import randint
from math import factorial
from copy import copy
# Travelling salesman solver
# global variables for tsp
qstart = 0
qend = 0
queue = []
bestCost = 0
bestTrack = ''
def tsp(nodes, start):
global qstart
global qend
global queue
global bestCost
global bestTrack
n = len(nodes)
if n == 0:
return [], 0
qstart = 0
qend = n - 1
queue = copy(nodes) #range(n)
bestCost = 9999999 # a very large number
bestTrack = ''
def recur(head, last, CostSoFar, track):
global bestCost
global bestTrack
for j in range( n-head):
node = gett()
track2 = track + node.initial
NewCost = CostSoFar + metric(last, node)
if NewCost < bestCost:
if head < n-2:
recur(head+1, node, NewCost, track2)
else:
node2 = gett()
finalCost = NewCost + metric(node, node2)
if finalCost < bestCost:
bestCost = finalCost
bestTrack = track2 + node2.initial
putt(node2)
putt(node)
def gett():
global qstart
x = queue[qstart]
qstart += 1
if qstart == n:
qstart = 0
return x
def putt(x):
global queue
global qend
qend += 1
if qend == n:
qend = 0
queue[qend] = x
recur(0, start, 0, '') # exhaustive search of all permutations
return bestTrack, bestCost
# MAIN PROGRAM
people = []
class person:
def __init__(self, name, x, y):
self.name = name
self.initial = name[0]
self.x = x # house location North/South
self.y = y # house location East/West
self.bitplace = pow(2, len(people))
def isElementOf(self, n): # If the ith bit in the index of
# powerset (base 2)is 1 then it contains the ith person,
# or else it dosnt.
if self.bitplace & n <> 0:
return True
return False
def metric(a,b): # city grid
return abs(a.x - b.x) + abs(a.y - b.y)
# random locations are being used for test purposes.
# Cost of travel is asssumed to be proportional to distance
pub = person('Shakespear', 5, 5)
people.append(person('Anne', randint(1, 10), randint(1, 10)))
people.append(person('Brian', randint(1, 10), randint(1, 10)))
people.append(person('Cindy', randint(1, 10), randint(1, 10)))
people.append(person('David', randint(1, 10), randint(1, 10)))
people.append(person('Elaine', randint(1, 10), randint(1, 10)))
#people.append(person('Francis', randint(1, 10), randint(1, 10)))
#people.append(person('Girlee', randint(1, 10), randint(1, 10)))
#people.append(person('Him', randint(1, 10), randint(1, 10)))
#people.append(person('Indy', randint(1, 10), randint(1, 10)))
#people.append(person('Jim', randint(1, 10), randint(1, 10)))
#people.append(person('Kathy', randint(1, 10), randint(1, 10))) # On my 3Gz Dual Core this takes 3min, mostly solving tsp
lenPeople = len(people)
class solution:
def __init__(self, coalition):
self.coalition = coalition
self.size = len(coalition)
self.index = len(powerset)
self.split = []
if len(coalition) == 1: # individual
self.cost = metric(coalition[0], pub)
self.trk = coalition[0].initial
coalition[0].cost = self.cost
else:
self.trk, self.cost = tsp(coalition, pub)
print 'route: ', self.trk, 'cost>',self.cost
powerset = []
# The size of the problem increases exponentialy
# w.r.t the number of people.
# Fortunately only about four people can fit in a taxi.
for i in range(pow(2, lenPeople)): # itterating over the power set
newset = []
for j in people:
if j.isElementOf(i):
newset.append(j)
powerset.append(solution(newset))
def ShapleySub(q, p, setindex, personbit):
s = q.size
t = factorial(s) * factorial(lenPeople - s - 1)
v = powerset[setindex + personbit]
return t * ( v.cost - q.cost)
# Note: The Shapley value method assumes that there is no
# incentive for any party to defect from the grand
# coalition. This may not be true in this scenario as it
# may be more efficient for parties to travel seperately.
# In this aproach I calculate the minimum possible cost for the grand coalition
# allowing for seperate taxi travel and assign cost portions to each person
# as if there were no strategic politicing.
# For example if A can travel with B or C, but
# A, B and C cannot travel together. Both B and C are advantaged and A pays less
# than choosing to travel with either. So even if B ends up travelling home alone
# his travel is discounted by the others because of his ability to dispute
# the status quoe.
# test if union cost > sum cost of partitions
for setSize in range(2, lenPeople + 1):
for p in powerset:
if p.size == setSize:
for i in range(1, pow(2, p.size-1)): # itterating all possible splits
subset0s = 0
subset1s = 0
for j in range(p.size):
k = pow(2, j)
if k & i == 0: # note this coresponds to the bit places of the coalition not to the people list.
subset0s += p.coalition[j].bitplace # bitplace coresponds to the people list
else:
subset1s += p.coalition[j].bitplace
if powerset[subset0s].cost + powerset[subset1s].cost < p.cost:
# subsets gain more by travelling seperately
print 'New costing for', p.trk, powerset[subset0s].cost + powerset[subset1s].cost, 'down from', p.cost
p.cost = powerset[subset0s].cost + powerset[subset1s].cost
p.split = [subset0s, subset1s]
print 'Shapley values'
for p in people:
Shapley = 0.0
personbit = p.bitplace
for q in powerset:
setindex = q.index
if not(p.isElementOf( setindex)):
Shapley += ShapleySub(q, p, setindex, personbit)
Shapley = Shapley / factorial(lenPeople)
diff = p.cost - Shapley
if p.cost > 0:
perc = int(diff / p.cost * 100)
else:
perc = 0
print "%s pays %6.2f saves %6.2f saving %d percent." %(p.name, Shapley, diff, perc)
# Draws map
print
print '#######################'
for i in range(1, 11):
line = '# '
for j in range(1, 11):
match = False
if i == pub.x and j == pub.y:
line += pub.initial
match = True
for p in people:
if p.x == i and p.y == j:
line += p.initial
match = True
if not match:
line += '. '
else:
line += ' '
line += '#'
print line
print '#######################'
def AllocateTaxis(pset):
if len(pset.split) == 0:
print pset.trk, pset.cost
else:
AllocateTaxis(powerset[pset.split[0]])
AllocateTaxis(powerset[pset.split[1]])
print
print 'Allocating taxis'
AllocateTaxis(powerset[len(powerset)-1])
|
The scenario is that a group of friends wish to travel home from the pub sharing taxis. The Shapley value is used to distribute costs within the grand coalition. Defection of individuals is possible but the assumption is made that there will be no strategic politicing. An unintuitive result sometimes occurs where one person will travel home alone but their fare will be discounted by the group because of the strategic location of their house.