To draw an IFS fractal probabilities of each transformation must be given normally. This code calculates the probabilities using a heuristic instead. The bounding rectangle of the fractal also calculated automatically.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | # IFS fractals w/ automatic probability distribution
# http://en.wikipedia.org/wiki/Iterated_function_system
# http://en.wikipedia.org/wiki/Chaos_game
# FB - 20120311
import random
from PIL import Image
imgx = 512
imgy = 512 # will be auto-re-adjusted according to aspect ratio of the fractal
maxIt = imgx * imgy * 2
##fractalName = "Barnsley Fern"
##mat=[[0.0, 0.0, 0.0, 0.16, 0.0, 0.0],
## [0.85, 0.04, -0.04, 0.85, 0.0, 1.6],
## [0.2, -0.26, 0.23, 0.22, 0.0, 1.6],
## [-0.15, 0.28, 0.26, 0.24, 0.0, 0.44]]
fractalName = "Centipede"
mat = [[0.824074, 0.281482, -0.212346, 0.864198, -1.882290, -0.110607],
[0.088272, 0.520988, -0.463889, -0.377778, 0.785360, 8.095795]]
##fractalName = "Levy C curve"
##mat = [[0.5, -0.5, 0.5, 0.5, 0.0, 0.0],
## [0.5, 0.5, -0.5, 0.5, 0.5, 0.5]]
##fractalName = "Dragon curve"
##mat = [[0.5, -0.5, 0.5, 0.5, 0.0, 0.0],
## [-0.5, -0.5, 0.5, -0.5, 1.0, 0.0]]
##fractalName = "Sierpinski Triangle"
##mat = [[0.5, 0.0, 0.0, 0.5, 0.0, 0.0],
## [0.5, 0.0, 0.0, 0.5, 0.5, 0.0],
## [0.5, 0.0, 0.0, 0.5, 0.0, 0.5]]
# Area of Polygon using Shoelace formula
# http://en.wikipedia.org/wiki/Shoelace_formula
# corners must be ordered in clockwise or counter-clockwise direction
def PolygonArea(corners):
n = len(corners) # of corners
area = 0.0
for i in range(n):
j = (i + 1) % n
area += corners[i][0] * corners[j][1]
area -= corners[j][0] * corners[i][1]
area = abs(area) / 2.0
return area
def IFS(x, y, i): # apply ith transformation to given point
x0 = x * mat[i][0] + y * mat[i][1] + mat[i][4]
y = x * mat[i][2] + y * mat[i][3] + mat[i][5]
x = x0
return (x, y)
m = len(mat) # number of IFS transformations
# calculate probabilities of the transformations
areas = [] # areas of transformed rectangles
for j in range(m):
area = PolygonArea([IFS(1, 1, j), IFS(-1, 1, j), IFS(-1, -1, j), IFS(1, -1, j)])
areas.append(area)
totalArea = sum(areas)
pArr = []
for j in range(m):
pArr.append(areas[j] / totalArea)
# find bounding rectangle of the fractal using Chaos Game algorithm
x = mat[0][4]
y = mat[0][5]
xa = x
xb = x
ya = y
yb = y
for k in range(maxIt):
i = random.randint(0, m - 1)
if random.random() <= pArr[i]:
(x, y) = IFS(x, y, i)
if x < xa:
xa = x
if x > xb:
xb = x
if y < ya:
ya = y
if y > yb:
yb = y
imgy = int(imgy * (yb - ya) / (xb - xa)) # re-adjust the aspect ratio
image = Image.new("RGB", (imgx, imgy))
pixels = image.load()
# drawing using Chaos Game algorithm
theColor = (255, 255, 255)
x=0.0
y=0.0
for k in range(maxIt):
i = random.randint(0, m - 1)
if random.random() <= pArr[i]:
(x, y) = IFS(x, y, i)
jx = int((x - xa) / (xb - xa) * (imgx - 1))
jy = (imgy - 1) - int((y - ya) / (yb - ya) * (imgy - 1))
if jx >= 0 and jx < imgx and jy >= 0 and jy < imgy:
pixels[jx, jy] = theColor
image.save(fractalName + " fractal.png", "PNG")
print "Fractal Name: " + fractalName
print "Probabilities: " + str(pArr)
|