def solve(eq, var=('x', 'y')): """ Solve a system of simultaneous equation in two variables of the form 2*x + 5*y=c1; 3*x - 5*y=c2 Example: solve('12*x - 3*y = 21; 9*x - 18*y=0') Should work for negative constants as well. Example: solve('3*x - 5*y=-11; 12*x + 3*y=48') Returns a two tuple of (x, y) values. NOTE: Won't denegarate to the special case of solving for only one variable. """ var_re = re.compile(r'(\+|\-)\s*(\d*)\s*\*?\s*(x|y)') const_re = re.compile(r'(\+|\-)\s*(\-?\d+)$') constants, eqns, coeffs, default = [],[], {'x': [], 'y': []}, {'': '1'} for e in eq.split(';'): eq1 = e.replace("="," - ").strip() if not eq1.startswith('-'): eq1 = '+' + eq1 eqns.append(eq1) var_eq1, var_eq2 = map(var_re.findall, eqns) constants = [-1*int(x[0][1]) for x in map(const_re.findall, eqns)] [coeffs[x[2]].append(int((x[0]+ default.get(x[1], x[1])).strip())) for x in (var_eq1 + var_eq2)] ycoeff = coeffs['y'] xcoeff = coeffs['x'] # Adjust equations to take out y and solve for x if ycoeff[0]*ycoeff[1] > 0: ycoeff[1] *= -1 xcoeff[0] *= ycoeff[1] constants[0] *= -1*ycoeff[1] else: xcoeff[0] *= -1*ycoeff[1] constants[0] *= ycoeff[1] xcoeff[1] *= ycoeff[0] constants[1] *= -1*ycoeff[0] # Obtain x xval = sum(constants)*1.0/sum(xcoeff) # Now solve for y using value of x z = eval(eqns[0],{'x': xval, 'y': 1j}) yval = -z.real*1.0/z.imag return (xval, yval)