Recipe 578004 provides a simple way of creating 2D graphical experiments based on http://processing.org/ and its easy-to-use Java framework. This module is meant to be a simple demonstration of that recipe and shows a simple BOIDs example that uses processing
. Though the API is highly incomplete and slightly different, it shows what was inspired by the faster-running http://processing.org/learning/topics/flocking.html .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | #! /usr/bin/env python
import collections
import math
import random
import processing
import vector
################################################################################
# QVGA Resolution
WIDTH = 320
HEIGHT = 240
################################################################################
class Demo(processing.Process):
"Demo.main(width, height) -> Starts the demonstration"
NOT_CREATING_FISH = -1
SCHOOLS = ('red', 'yellow'), ('blue', 'green')
def setup(self, background):
"Setup the screen and boids before starting simulation."
background('black')
self.schools = []
self.sources = []
for body_color, trim_color in self.SCHOOLS:
new_school = School(body_color, trim_color)
new_source = vector.Vector2(random.random() * WIDTH,
random.random() * HEIGHT)
self.schools.append(new_school)
self.sources.append(new_source)
self.pointer = 0
def render(self, graphics):
"Displays the boids on the graphics every time called."
self.add_fish()
graphics.clear()
fish = 0
for school in self.schools:
school.render(graphics)
fish += school.size()
graphics.write(5, 5, fish, 'white')
def add_fish(self):
"Add a fish to the next school while creating more fish."
if self.pointer != self.NOT_CREATING_FISH:
new_fish = Fish(self.sources[self.pointer])
self.schools[self.pointer].add_fish(new_fish)
self.pointer = (self.pointer + 1) % len(self.SCHOOLS)
def update(self, interval):
"Run one step of the physics simulation for the interval."
for school in self.schools:
school.update(interval)
def mouse_pressed(self, event):
"Create fish at cursor and add to the smallest school."
new_fish = Fish(vector.Vector2(event.x, event.y))
min(self.schools, key=School.size).add_fish(new_fish)
def speed_warning(self):
"Stop creating fish and remove fish from largest school."
self.pointer = self.NOT_CREATING_FISH
max(self.schools, key=School.size).kill_fish()
################################################################################
class Fish:
"Fish(location) -> Fish"
HOW_WIDE = 6 # Width of the fish
HOW_LONG = 12 # Length of the fish
MAX_FORCE = 0.05 # Maximum directional steering force
MAX_SPEED = 60.0 # Maximum speed at which to travel
SEP_FACTOR = 1.5 # Arbitrary separation mutliplier
ALI_FACTOR = 1.0 # Arbitrary alignment mutliplier
COH_FACTOR = 1.0 # Arbitrary cohesion mutliplier
DESIRED_SEPARATION = 7 # Turn from each other when closer
NEIGHBOR_DISTANCE = 17 # Maximum distance for interactions
########################################################################
# DO NOT CHANGE THE FOLLOWING SECTION
limits = math.hypot(HOW_LONG, HOW_WIDE)
radius = limits / 2
DESIRED_SEPARATION += limits
NEIGHBOR_DISTANCE += limits
TOP = 0 - radius
LEFT = 0 - radius
RIGHT = WIDTH + radius
BOTTOM = HEIGHT + radius
SHAPE = processing.Polygon(vector.Vector2(HOW_LONG / +2, 0),
vector.Vector2(HOW_LONG / -2, HOW_WIDE / +2),
vector.Vector2(HOW_LONG / -2, HOW_WIDE / -2))
del limits, radius, HOW_LONG, HOW_WIDE
__slots__ = 'location', 'velocity', 'steering', 'body_color', 'trim_color'
# END OF PRECALCULATED FISH VARIABLES
########################################################################
def __init__(self, location):
"Initialize the fish with several vectors and colors."
self.location = location.copy()
self.velocity = vector.Polar2(random.random() * self.MAX_SPEED,
random.random() * 360)
self.body_color = ''
self.trim_color = ''
def paint(self, body_color, trim_color):
"Assign colors to the fish's body and trim (outline)."
self.body_color = body_color
self.trim_color = trim_color
def render(self, graphics):
"Draw the fish's shape on the given graphics context."
polygon = self.SHAPE.copy()
polygon.rotate(self.velocity.direction)
polygon.translate(self.location)
graphics.draw(polygon, self.body_color, self.trim_color)
def run_AI(self, school):
"Execute the three boid rules and store in steering."
self.steering = vector.Vector2(0, 0)
# Follow rules of separation, alignment, and cohesion.
separation = vector.Vector2(0, 0)
alignment = vector.Vector2(0, 0)
cohesion = vector.Vector2(0, 0)
# Track fish that are too close along with neighbours.
too_close = False
neighbors = 0
# Loop over all other fish from the school fish is in.
for fish in school:
if fish is not self:
# Get the difference in location and distance.
offset = self.location - fish.location
length = offset.magnitude
# Find fish that are too close to current one.
if length < self.DESIRED_SEPARATION:
separation += offset.normalize() / length
too_close = True
# Try joining fish in fish's present vicinity.
if length < self.NEIGHBOR_DISTANCE:
alignment += fish.velocity
cohesion += fish.location
neighbors += 1
# Steer away from fish in this school that are nearby.
if too_close:
self.steering += self.correction(separation) * self.SEP_FACTOR
# Gather with and align to schoolmates detected above.
if neighbors:
self.steering += self.correction(alignment) * self.ALI_FACTOR
cohesion /= neighbors
cohesion -= self.location
self.steering += self.correction(cohesion) * self.ALI_FACTOR
def correction(self, target):
"Create a force towards the direction of the target."
target.magnitude = self.MAX_SPEED
return (target - self.velocity).limit(self.MAX_FORCE)
def update(self, interval):
"Change velocity and location with respect to time."
self.velocity += self.steering / interval
self.location += self.velocity.limit(self.MAX_SPEED) * interval
self.wraparound()
def wraparound(self):
"Move the fish to wrap around the edges of the screen."
if self.location.y < self.TOP:
self.location.y = self.BOTTOM
elif self.location.y > self.BOTTOM:
self.location.y = self.TOP
if self.location.x < self.LEFT:
self.location.x = self.RIGHT
elif self.location.x > self.RIGHT:
self.location.x = self.LEFT
################################################################################
class School:
"School(body_color, trim_color) -> School"
__slots__ = 'body_color', 'trim_color', 'fish_deque'
def __init__(self, body_color, trim_color):
"Initialize school with color identity and fish container."
self.body_color = body_color
self.trim_color = trim_color
self.fish_deque = collections.deque()
def add_fish(self, fish):
"Paint the fish with identity before adding to fish list."
fish.paint(self.body_color, self.trim_color)
self.fish_deque.append(fish)
def remove_fish(self):
"Take a fish from this school and return fish to caller."
return self.fish_deque.popleft()
def size(self):
"Get number of fish in school and return the total count."
return len(self.fish_deque)
def render(self, graphics):
"Draw each fish in this school to the graphics context."
for fish in self.fish_deque:
fish.render(graphics)
def update(self, interval):
"Run the AI code of each fish before updating positions."
for fish in self.fish_deque:
fish.run_AI(self.fish_deque)
for fish in self.fish_deque:
fish.update(interval)
def kill_fish(self):
"If there are any fish in this school, remove one of them."
if self.size() > 0:
self.remove_fish()
################################################################################
import recipe576904; recipe576904.bind_all(globals())
################################################################################
if __name__ == '__main__':
Demo.main(WIDTH, HEIGHT)
|