This allows you to hold on to your csv in a dict form, do lookups and modifications, and also write it in a preserved order. You can also change which column you want to be your lookup column (making sure that there is a unique id for every row of that column. In my example of usage, it assumes that both classes are contained withing the same file named 'CustomDictReader.py'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | import csv, collections, copy
'''
# CSV TEST FILE 'test.csv'
TBLID,DATETIME,VAL
C1,01:01:2011:00:01:23,5
C2,01:01:2012:00:01:23,8
C3,01:01:2013:00:01:23,4
C4,01:01:2011:01:01:23,9
C5,01:01:2011:02:01:23,1
C6,01:01:2011:03:01:23,5
C7,01:01:2011:00:01:23,6
C8,01:01:2011:00:21:23,8
C9,01:01:2011:12:01:23,1
#usage
>>> import CustomDictReader
>>> import pprint
>>> test = CustomDictReader.CSVRW()
>>> success, thedict = test.createCsvDict('TBLID',',',None,'test.csv')
>>> pprint.pprint(dict(d))
{'C1': OrderedDict([('TBLID', 'C1'), ('DATETIME', '01:01:2011:00:01:23'), ('VAL', '5')]),
'C2': OrderedDict([('TBLID', 'C2'), ('DATETIME', '01:01:2012:00:01:23'), ('VAL', '8')]),
'C3': OrderedDict([('TBLID', 'C3'), ('DATETIME', '01:01:2013:00:01:23'), ('VAL', '4')]),
'C4': OrderedDict([('TBLID', 'C4'), ('DATETIME', '01:01:2011:01:01:23'), ('VAL', '9')]),
'C5': OrderedDict([('TBLID', 'C5'), ('DATETIME', '01:01:2011:02:01:23'), ('VAL', '1')]),
'C6': OrderedDict([('TBLID', 'C6'), ('DATETIME', '01:01:2011:03:01:23'), ('VAL', '5')]),
'C7': OrderedDict([('TBLID', 'C7'), ('DATETIME', '01:01:2011:00:01:23'), ('VAL', '6')]),
'C8': OrderedDict([('TBLID', 'C8'), ('DATETIME', '01:01:2011:00:21:23'), ('VAL', '8')]),
'C9': OrderedDict([('TBLID', 'C9'), ('DATETIME', '01:01:2011:12:01:23'), ('VAL', '1')])}
'''
class CustomDictReader(csv.DictReader):
'''
override the next() function and use an
ordered dict in order to preserve writing back
into the file
'''
def __init__(self, f, fieldnames = None, restkey = None, restval = None, dialect ="excel", *args, **kwds):
csv.DictReader.__init__(self, f, fieldnames = None, restkey = None, restval = None, dialect = "excel", *args, **kwds)
def next(self):
if self.line_num == 0:
# Used only for its side effect.
self.fieldnames
row = self.reader.next()
self.line_num = self.reader.line_num
# unlike the basic reader, we prefer not to return blanks,
# because we will typically wind up with a dict full of None
# values
while row == []:
row = self.reader.next()
d = collections.OrderedDict(zip(self.fieldnames, row))
lf = len(self.fieldnames)
lr = len(row)
if lf < lr:
d[self.restkey] = row[lf:]
elif lf > lr:
for key in self.fieldnames[lr:]:
d[key] = self.restval
return d
class CSVRW(object):
def __init__(self):
self.file_name = ""
self.csv_delim = ""
self.csv_dict = collections.OrderedDict()
def setCsvFileName(self, name):
'''
@brief stores csv file name
@param name- the file name
'''
self.file_name = name
def getCsvFileName():
'''
@brief getter
@return returns the file name
'''
return self.file_name
def getCsvDict(self):
'''
@brief getter
@return returns a deep copy of the csv as a dictionary
'''
return copy.deepcopy(self.csv_dict)
def clearCsvDict(self):
'''
@brief resets the dictionary
'''
self.csv_dict = collections.OrderedDict()
def updateCsvDict(self, newCsvDict):
'''
creates a deep copy of the dict passed in and
sets it to the member one
'''
self.csv_dict = copy.deepcopy(newCsvDict)
def createCsvDict(self,dictKey, delim, handle = None, name = None, readMode = 'rb', **kwargs):
'''
@brief create a dict from a csv file where:
the top level keys are the first line in the dict, overrideable w/ **kwargs
each row is a dict
each row can be accessed by the value stored in the column associated w/ dictKey
that is to say, if you want to index into your csv file based on the contents of the
third column, pass the name of that col in as 'dictKey'
@param dictKey - row key whose value will act as an index
@param delim - csv file deliminator
@param handle - file handle (leave as None if you wish to pass in a file name)
@param name - file name (leave as None if you wish to pass in a file handle)
@param readMode - 'r' || 'rb'
@param **kwargs - additional args allowed by the csv module
@return bool - SUCCESS|FAIL
'''
retVal = (False, None)
self.csv_delim = delim
try:
reader = None
if isinstance(handle, file):
self.setCsvFileName(handle.name)
reader = CustomDictReader(handle, delim, **kwargs)
else:
if None == name:
name = self.getCsvFileName()
else:
self.setCsvFileName(name)
reader = CustomDictReader(open(name, readMode), delim, **kwargs)
for row in reader:
self.csv_dict[row[dictKey]] = row
retVal = (True, self.getCsvDict())
except IOError:
retVal = (False, 'Error opening file')
return retVal
def createCsv(writeMode, outFileName = None, delim = None):
'''
@brief create a csv from self.csv_dict
@param writeMode - 'w' || 'wb'
@param outFileName - file name || file handle
@param delim - csv deliminator
@return none
'''
if None == outFileName:
outFileName = self.file_name
if None == delim:
delim = self.csv_delim
with open(outFileName, writeMode) as fout:
for key in self.csv_dict.values():
fout.write(delim.join(key.keys()) + '\n')
break
for key in self.csv_dict.values():
fout.write(delim.join(key.values()) + '\n')
|
In your useage example, should be: pprint.pprint(dict(d))
Having trouble with exporting, expanding on your example with test.createCsv('wb') I get: NameError: global name 'self' is not defined
The
CSVRW.createCsv()
method definition is missing its initialself
argument.