This algorithm factors a polynomial but will only factor it by giving the rational roots. For instance if one of the roots in the polynomial was irrational, the polynomial would not be factored correctly.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | from math import ceil
listOfFactors = lambda n: {i for i in range(1,ceil(abs(n)/2)+1) if n%i == 0}
def removeDuplicates(mylist):
if mylist:
mylist.sort()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[i]:
del mylist[i]
else:
last = mylist[i]
return mylist
def polyRoots(polyListCoeff):
allFactors = set()
allFactorsListOld = list(allFactors.union(listOfFactors(polyListCoeff[0]),{polyListCoeff[0]},listOfFactors(polyListCoeff[-1]),{polyListCoeff[-1]}))
allFactorsListOld.extend([-1*i for i in allFactorsListOld])
allFactorsList = list()
for k in allFactorsListOld:
for j in allFactorsListOld:
allFactorsList.append(k/j)
allFactorsList = removeDuplicates(allFactorsList)
polyListCoeff.reverse()
roots = [i for i in allFactorsList if sum([pow(i,j)*polyListCoeff[j] for j in range(0,len(polyListCoeff))]) == 0]
factorList = list()
for i in roots:
if i<0:
factorList.append("(x+{})".format(-i))
else:
factorList.append("(x-{})".format(i))
return "".join(factorList)
|
Here is an example of the factoring of x^2 - 4
>>> polyRoots([1,0,-4])
'(x+2.0)(x-2.0)'
Tags: poly, polynomial, polyroots, poly_roots, rational, rational_root_theorem, root, roots, theorem