Welcome, guest | Sign In | My Account | Store | Cart

My implementation of 2-3 Trees on python

Python, 471 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""

    Python 2-3 Tree implementation

    2-3 Tree is a balanced tree each node of which may contain 2 elements
    and 3 references on its children.

    Element lookup speed is log2(N) < x < log3(N)
    Insertion and deletion is about 2 * log2(N)

    See http://en.wikipedia.org/wiki/2-3_tree for more info

    2011 by Boris Tatarintsev

"""

class Pair(object):

    # use this class if associative tree (or map) is needed
    # over 2-3 tree

    def __init__(self, key, value):
        self.key = key
        self.value = value

    def __lt__(self, other):
        if type(other) is Pair:
            return self.key < other.key
        else:
            return self.key < other

    def __gt__(self, other):
        if type(other) is Pair:
            return self.key > other.key
        else:
            return self.key > other

    def __eq__(self, other):
        if type(other) is Pair:
            return self.key == other.key
        else:            
            return self.key == other
        return None

    def __str__(self):
        return 'key: %s, value: %s' % (str(self.key), str(self.value))

    def key(self):
        return self.key

    def val(self):
        return self.value


class Node(object):

    def __init__(self, v = None, parent = None):
        self.values, self.valcnt = None, 0
        self.links, self.refcnt = None, 0
        self.parent = parent
        self.insertValue(v)

    def __str__(self):
        out = []
        if self.values is not None:        
            for v in self.values:
                if v is not None:
                    out.append(' %s ' % str(v))
            return ''.join(out)
        else: return 'empty' 

    def __iter__(self):
        if self.values is not None:
            for item in self.values:
                yield item

    def __getlink(self, a):
        for idx in xrange(self.valcnt):
            if idx is 0: 
                if a < self.values[idx]: return idx
            else: 
                if self.values[idx - 1] < a < self.values[idx]:  return idx
            if idx == self.valcnt - 1: return idx + 1
        return -1

    def __addLink(self, link):
        if self.links is None: self.links = [None] * 4
        self.links[self.refcnt] = link
        self.refcnt += 1

    def __insertLink(self, idx, anotherNode):
        if self.links is None: self.links = [None] * 4
        if idx == 0:
            self.links[0],self.links[1],self.links[2], self.links[3] = anotherNode,self.links[0],self.links[1], self.links[2]
        elif idx == 1:
            self.links[1], self.links[2], self.links[3] = anotherNode, self.links[1], self.links[2]
        elif idx == 2:
            self.links[2], self.links[3] = anotherNode, self.links[2]
        else:
            self.links[3] = anotherNode
        self.refcnt += 1

    def __removeLink(self, idx):
        if idx == 0:
            self.links[0], self.links[1], self.links[2], self.links[3] = self.links[1], self.links[2], self.links[3], None
        elif idx == 1:
            self.links[1], self.links[2], self.links[3] = self.links[2], self.links[3], None
        elif idx == 2:
            self.links[2], self.links[3] = self.links[3], None
        else:
            self.links[3] = None
        self.refcnt -= 1

    def __rearrangeLinks(self, a):
        """ Rearrange links when adding a new node """
        if self.valcnt != 0:            
            if a < self.values[0] and not self.isLeafNode() and self.refcnt < 3: 
                # shift all the links to the right when adding new in element
                self.__insertLink(0, None)
            elif self.valcnt == 2 and self.refcnt == 3 and self.values[self.valcnt - 1] > a > self.values[0]:
                # rearrange middle links when adding med element
                self.__insertLink(1, None)

    def __sort3(self, arr, l):
        """ Sort 2 or 3 arrays (very rubost and fast) """
        if l >= 2:
            if arr[0] > arr[1]: arr[0], arr[1] = arr[1], arr[0]
        if l == 3:
            if arr[1] > arr[2]: arr[1], arr[2] = arr[2], arr[1]
            if arr[0] > arr[1]: arr[0], arr[1] = arr[1], arr[0]


    # interface methods & properties

    def insertValue(self, a):
        """ Insert a value into node """
        if a is not None and self.valcnt < 3:
            if self.valcnt is 0: self.values = [None] * 3
            self.__rearrangeLinks(a)
            self.values[self.valcnt] = a
            self.valcnt += 1
            self.__sort3(self.values, self.valcnt)
        return self

    def removeValue(self, val):
        """ Remove value from node """
        if self.contains(val):
            idx = self.values.index(val)
            if idx == 0:
                self.values[0], self.values[1], self.values[2] = self.values[1], self.values[2], None
            elif idx == 1:
                self.values[1], self.values[2] = self.values[2], None
            else:
                self.values[2] = None
            self.valcnt -= 1
        return self

    def removeLink(self, node):
        """ Remove link from self to another node """
        self.__removeLink(self.getLinkIdx(node))
        return self

    def isConsistent(self):
        """ Check whether the node is consistent, this means it doesn't contain 3 items or 4 links """
        return not (self.valcnt > 2 or self.refcnt > 3)

    def isLeafNode(self):
        """ Check whether this is a leaf node or not """
        return self.refcnt == 0

    def isEmptyNode(self):
        """ Returns true if node doesn't containt any  value """
        return self.valcnt == 0

    def getLink(self, linkIdx):
        """ Get link by its index, return None if there is no link with such an index """
        if linkIdx < self.refcnt:
            return self.links[linkIdx]

    def getLinkIdx(self, destNode):
        """ Get index of the link which points to the given node """
        return self.links.index(destNode)

    def addLink(self, anotherNode):
        """ Add link to another node """
        if anotherNode is not None:
            if self.links is None: self.links = [None] * 4
            idx = self.__getlink(anotherNode.values[0])
            if idx != -1:
                if idx < self.refcnt and self.links[idx] is None:
                    self.links[idx] = anotherNode
                else:
                    self.__insertLink(idx, anotherNode)
                anotherNode.parent = self
        return self

    def contains(self, a):
        """ Check if node contains a given value """
        if self.valcnt is not 0:
            if (self.values[0] > a or self.values[self.valcnt - 1] < a) or a not in self.values:
                return None            
            return self.values[self.values.index(a)]

    def chooseChild(self, a):
        """ Choose where to go according to the value a """
        idx = self.__getlink(a)
        if 0 <= idx < self.refcnt: 
            return self.links[idx]
  
    def getItem(self, a):
        if self.contains(a):
            return self.values[self.values.index(a)]
        return None


class TTTree(object):

    def __init__(self):
        self.root = Node()
        self.lastSearchDepth = 0

    def __iter__(self):
        stack = [self.root]
        while len(stack):
            node = stack.pop()
            yield node    
            for j in xrange(node.refcnt - 1, -1, -1):
                stack.append(node.getLink(j))

    def __str__(self):
        """ String representation of a tree (parentheses form) """
        out, stack = [], [self.root]
        while stack:
            node = stack.pop()
            if node == ')':
                out.append(')')
                continue
            out.append('%s(' % str(node))
            stack.append(')')
            for j in xrange(node.refcnt - 1, -1, -1):
                stack.append(node.getLink(j))        
        return ''.join(out)

    def __nextSucc(self, node):
        self.lastSearchDepth += 1
        if not node.isLeafNode():            
            return self.__nextSucc(node.links[0])
        return node

    def __find(self, curNode, a):
        if curNode is not None:
            if curNode.contains(a):
                return curNode
            nextNode = curNode.chooseChild(a)
            if nextNode is None:
                return curNode            
            self.lastSearchDepth += 1
            return self.__find(nextNode, a)

    def __getLeftSibling(self, node):
        """ Returns left sibling of a node """
        if (node and node.parent) is not None:
            return node.parent.getLink(node.parent.getLinkIdx(node) - 1)
    
    def __getRightSibling(self, node):
        """ Returns right sibling of a node """
        if (node and node.parent) is not None:
            return node.parent.getLink(node.parent.getLinkIdx(node) + 1)

    def __getSiblings(self, node):
        """ Returns node's siblings """
        # check whether one of our siblings has two items
        lS, rS, lCnt, rCnt = None, None, 0, 0
        if self.__getRightSibling(node) is not None:
            rS = self.__getRightSibling(node)
            rCnt = rS.valcnt
        if self.__getLeftSibling(node) is not None:
            lS = self.__getLeftSibling(node)
            lCnt = lS.valcnt
        return lS, lCnt, rS, rCnt

    def __swapValues(self, node1, a1, node2, a2):
        """ Swap any two values in nodes """
        if node1 is not node2:
            idx1, idx2 = node1.values.index(a1), node2.values.index(a2)
            node1.values[idx1], node2.values[idx2] = node2.values[idx2], node1.values[idx1]

    def __fixNodeRemove(self, node, parent = -1):
        
        """ Fix deletion """
      
        if node.isEmptyNode():

            if node is not self.root:

                if parent == -1:
                    parent = node.parent

                if node.isEmptyNode() or not node.isConsistent():

                    lS, lCnt, rS, rCnt = self.__getSiblings(node)
                    rSS, lSS = self.__getRightSibling(rS), self.__getLeftSibling(lS)

                    redistribute = True
                    
                    if (rS or lS) is not None:
                        if   rCnt == 2 or (rCnt == 1 and rSS != None and rSS.valcnt == 2):
                            sib = rS
                        elif lCnt == 2 or (lCnt == 1 and lSS != None and lSS.valcnt == 2):
                            sib = lS
                        elif lCnt == 1:
                            sib, redistribute = lS, False
                        elif rCnt == 1:
                            sib, redistribute = rS, False

                    if redistribute:
                        # case 1: redistribute
                        # left and right case
                        if parent.valcnt == 1:
                            if node == parent.getLink(0):
                                parent_val, sib_val = parent.values[0], sib.values[0]
                                child = sib.chooseChild(sib_val - 1)
                            elif node == parent.getLink(1):                                
                                parent_val, sib_val = parent.values[parent.valcnt - 1], sib.values[sib.valcnt - 1]
                                child = sib.chooseChild(sib_val + 1)  
                        else:
                            if sib == parent.getLink(1):
                                # left
                                if node == parent.getLink(0):
                                    parent_val, sib_val = parent.values[0], sib.values[0]
                                    child = sib.chooseChild(sib_val - 1)
                                # right
                                elif node == parent.getLink(2):
                                    parent_val, sib_val = parent.values[parent.valcnt - 1], sib.values[sib.valcnt - 1]
                                    child = sib.chooseChild(sib_val + 1)
                            # middle
                            elif sib == parent.getLink(2):
                                parent_val, sib_val = parent.values[parent.valcnt - 1], sib.values[0]
                                child = sib.chooseChild(sib_val - 1)
                            elif sib == parent.getLink(0):
                                parent_val, sib_val = parent.values[0], sib.values[sib.valcnt - 1]
                                child = sib.chooseChild(sib_val + 1)

                        node.insertValue(parent_val)
                        parent.removeValue(parent_val)
                        parent.insertValue(sib_val)
                        sib.removeValue(sib_val)                      

                        if not node.isLeafNode():
                            # if this is not a leaf node, redistribute the links also
                            node.addLink(child)
                            sib.removeLink(child)

                        next_node = sib

                    else:
                        # case 2: merge
                        if parent.valcnt == 1:
                            parent_val = parent.values[0]
                        else:                            
                            if sib == parent.getLink(0):
                                parent_val = parent.values[0]
                            elif sib == parent.getLink(1):
                                if sib == rS:
                                    parent_val = parent.values[0]
                                if sib == lS:
                                    parent_val = parent.values[parent.valcnt - 1]

                        child = node.getLink(0)

                        sib.insertValue(parent_val)
                        parent.removeValue(parent_val)
                        parent.removeLink(node)

                        if not node.isLeafNode():
                            sib.addLink(child)

                        next_node = parent

                self.__fixNodeRemove(next_node, next_node.parent) 
            
            else:
                # root node
                self.root = self.root.getLink(0)
                     
    def __fixNodeInsert(self, node):
        if not node.isConsistent():
            # conflict detected, try to resolve it
            if node.isLeafNode() and node is not self.root:
                # case for leaf node
                node.parent.insertValue(node.values[1])
                node.parent.removeLink(node)
                # split the node
                node.parent.addLink(Node(node.values[0], node.parent))
                node.parent.addLink(Node(node.values[node.valcnt - 1], node.parent))
                self.__fixNodeInsert(node.parent)
            else:
                # case for internal node or root node 
                if node is not self.root:
                    node.parent.insertValue(node.values[1])
                    node.parent.removeLink(node)
                    parent = node.parent
                else:
                    self.root = Node(node.values[1])
                    parent = self.root

                # split the node
                leftNode, rightNode = Node(node.values[0], parent), Node(node.values[node.valcnt - 1], parent)
                parent.addLink(leftNode).addLink(rightNode)
                leftNode.addLink(node.getLink(0)).addLink(node.getLink(1))
                rightNode.addLink(node.getLink(2)).addLink(node.getLink(3))

                if node is not self.root:
                    self.__fixNodeInsert(parent)

    # interface methods

    def contains(self, a):
        """ See if we have a given value in our tree """ 
        node = self.findNode(a)
        return node if node.contains(a) else None

    def findNode(self, a):
        """ Find the node which contains the given value """        
        self.lastSearchDepth = 0
        return self.__find(self.root, a)

    def findInorderSucc(self, node, a):
        """ Returns inorder successor of any node """        
        self.lastSearchDepth = 0
        if node.isLeafNode():
            return node
        new_node = node.chooseChild(a + 1)
        return self.__nextSucc(new_node)

    def insertValue(self, a):
        """ Inserts a new value to tree and keeps it balanced """
        if self.root is None:
            self.root = Node(a)
        elif a is not None:
            node = self.findNode(a)
            res = node.contains(a)
            if res:  return res
            # try to insert a new value into existing node
            node.insertValue(a)
            self.__fixNodeInsert(node)
        return self

    def insertList(self, xs):
        """ Insert a list of values into a tree """
        if xs is not None and type(xs) is list:
            for item in xs: self.insertValue(item)

    def removeValue(self, a):
        """ Removes a value from the tree and keeps it balanced """
        node = self.findNode(a)
        if not node or not node.contains(a):
            return None
        # swap the value we want to delete with its inorder successor (always leaf)
        succ = self.findInorderSucc(node, a)
        self.__swapValues(node, a, succ, succ.values[0])
        # delete leaf node value
        succ.removeValue(a)
        # fix tree if needed
        self.__fixNodeRemove(succ)
        return self

    def removeList(self, xs):
       """ Deletes a list of values from a tree """ 
       if xs is not None and type(xs) is list:
            for item in xs: self.removeValue(item)

1 comment

Grant Jenks 9 years, 7 months ago  # | flag

If you're looking for an API similar to that provided by a 2-3 tree, check out the sortedcontainers module. It implements sorted list, sorted dict, and sorted set data types in pure-Python and is fast-as-C implementations (even faster!). Learn more about sortedcontainers, available on PyPI and github.

Created by Boris on Sat, 8 Oct 2011 (MIT)
Python recipes (4591)
Boris's recipes (1)

Required Modules

  • (none specified)

Other Information and Tasks