My implementation of 2-3 Trees on python
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | """
Python 2-3 Tree implementation
2-3 Tree is a balanced tree each node of which may contain 2 elements
and 3 references on its children.
Element lookup speed is log2(N) < x < log3(N)
Insertion and deletion is about 2 * log2(N)
See http://en.wikipedia.org/wiki/2-3_tree for more info
2011 by Boris Tatarintsev
"""
class Pair(object):
# use this class if associative tree (or map) is needed
# over 2-3 tree
def __init__(self, key, value):
self.key = key
self.value = value
def __lt__(self, other):
if type(other) is Pair:
return self.key < other.key
else:
return self.key < other
def __gt__(self, other):
if type(other) is Pair:
return self.key > other.key
else:
return self.key > other
def __eq__(self, other):
if type(other) is Pair:
return self.key == other.key
else:
return self.key == other
return None
def __str__(self):
return 'key: %s, value: %s' % (str(self.key), str(self.value))
def key(self):
return self.key
def val(self):
return self.value
class Node(object):
def __init__(self, v = None, parent = None):
self.values, self.valcnt = None, 0
self.links, self.refcnt = None, 0
self.parent = parent
self.insertValue(v)
def __str__(self):
out = []
if self.values is not None:
for v in self.values:
if v is not None:
out.append(' %s ' % str(v))
return ''.join(out)
else: return 'empty'
def __iter__(self):
if self.values is not None:
for item in self.values:
yield item
def __getlink(self, a):
for idx in xrange(self.valcnt):
if idx is 0:
if a < self.values[idx]: return idx
else:
if self.values[idx - 1] < a < self.values[idx]: return idx
if idx == self.valcnt - 1: return idx + 1
return -1
def __addLink(self, link):
if self.links is None: self.links = [None] * 4
self.links[self.refcnt] = link
self.refcnt += 1
def __insertLink(self, idx, anotherNode):
if self.links is None: self.links = [None] * 4
if idx == 0:
self.links[0],self.links[1],self.links[2], self.links[3] = anotherNode,self.links[0],self.links[1], self.links[2]
elif idx == 1:
self.links[1], self.links[2], self.links[3] = anotherNode, self.links[1], self.links[2]
elif idx == 2:
self.links[2], self.links[3] = anotherNode, self.links[2]
else:
self.links[3] = anotherNode
self.refcnt += 1
def __removeLink(self, idx):
if idx == 0:
self.links[0], self.links[1], self.links[2], self.links[3] = self.links[1], self.links[2], self.links[3], None
elif idx == 1:
self.links[1], self.links[2], self.links[3] = self.links[2], self.links[3], None
elif idx == 2:
self.links[2], self.links[3] = self.links[3], None
else:
self.links[3] = None
self.refcnt -= 1
def __rearrangeLinks(self, a):
""" Rearrange links when adding a new node """
if self.valcnt != 0:
if a < self.values[0] and not self.isLeafNode() and self.refcnt < 3:
# shift all the links to the right when adding new in element
self.__insertLink(0, None)
elif self.valcnt == 2 and self.refcnt == 3 and self.values[self.valcnt - 1] > a > self.values[0]:
# rearrange middle links when adding med element
self.__insertLink(1, None)
def __sort3(self, arr, l):
""" Sort 2 or 3 arrays (very rubost and fast) """
if l >= 2:
if arr[0] > arr[1]: arr[0], arr[1] = arr[1], arr[0]
if l == 3:
if arr[1] > arr[2]: arr[1], arr[2] = arr[2], arr[1]
if arr[0] > arr[1]: arr[0], arr[1] = arr[1], arr[0]
# interface methods & properties
def insertValue(self, a):
""" Insert a value into node """
if a is not None and self.valcnt < 3:
if self.valcnt is 0: self.values = [None] * 3
self.__rearrangeLinks(a)
self.values[self.valcnt] = a
self.valcnt += 1
self.__sort3(self.values, self.valcnt)
return self
def removeValue(self, val):
""" Remove value from node """
if self.contains(val):
idx = self.values.index(val)
if idx == 0:
self.values[0], self.values[1], self.values[2] = self.values[1], self.values[2], None
elif idx == 1:
self.values[1], self.values[2] = self.values[2], None
else:
self.values[2] = None
self.valcnt -= 1
return self
def removeLink(self, node):
""" Remove link from self to another node """
self.__removeLink(self.getLinkIdx(node))
return self
def isConsistent(self):
""" Check whether the node is consistent, this means it doesn't contain 3 items or 4 links """
return not (self.valcnt > 2 or self.refcnt > 3)
def isLeafNode(self):
""" Check whether this is a leaf node or not """
return self.refcnt == 0
def isEmptyNode(self):
""" Returns true if node doesn't containt any value """
return self.valcnt == 0
def getLink(self, linkIdx):
""" Get link by its index, return None if there is no link with such an index """
if linkIdx < self.refcnt:
return self.links[linkIdx]
def getLinkIdx(self, destNode):
""" Get index of the link which points to the given node """
return self.links.index(destNode)
def addLink(self, anotherNode):
""" Add link to another node """
if anotherNode is not None:
if self.links is None: self.links = [None] * 4
idx = self.__getlink(anotherNode.values[0])
if idx != -1:
if idx < self.refcnt and self.links[idx] is None:
self.links[idx] = anotherNode
else:
self.__insertLink(idx, anotherNode)
anotherNode.parent = self
return self
def contains(self, a):
""" Check if node contains a given value """
if self.valcnt is not 0:
if (self.values[0] > a or self.values[self.valcnt - 1] < a) or a not in self.values:
return None
return self.values[self.values.index(a)]
def chooseChild(self, a):
""" Choose where to go according to the value a """
idx = self.__getlink(a)
if 0 <= idx < self.refcnt:
return self.links[idx]
def getItem(self, a):
if self.contains(a):
return self.values[self.values.index(a)]
return None
class TTTree(object):
def __init__(self):
self.root = Node()
self.lastSearchDepth = 0
def __iter__(self):
stack = [self.root]
while len(stack):
node = stack.pop()
yield node
for j in xrange(node.refcnt - 1, -1, -1):
stack.append(node.getLink(j))
def __str__(self):
""" String representation of a tree (parentheses form) """
out, stack = [], [self.root]
while stack:
node = stack.pop()
if node == ')':
out.append(')')
continue
out.append('%s(' % str(node))
stack.append(')')
for j in xrange(node.refcnt - 1, -1, -1):
stack.append(node.getLink(j))
return ''.join(out)
def __nextSucc(self, node):
self.lastSearchDepth += 1
if not node.isLeafNode():
return self.__nextSucc(node.links[0])
return node
def __find(self, curNode, a):
if curNode is not None:
if curNode.contains(a):
return curNode
nextNode = curNode.chooseChild(a)
if nextNode is None:
return curNode
self.lastSearchDepth += 1
return self.__find(nextNode, a)
def __getLeftSibling(self, node):
""" Returns left sibling of a node """
if (node and node.parent) is not None:
return node.parent.getLink(node.parent.getLinkIdx(node) - 1)
def __getRightSibling(self, node):
""" Returns right sibling of a node """
if (node and node.parent) is not None:
return node.parent.getLink(node.parent.getLinkIdx(node) + 1)
def __getSiblings(self, node):
""" Returns node's siblings """
# check whether one of our siblings has two items
lS, rS, lCnt, rCnt = None, None, 0, 0
if self.__getRightSibling(node) is not None:
rS = self.__getRightSibling(node)
rCnt = rS.valcnt
if self.__getLeftSibling(node) is not None:
lS = self.__getLeftSibling(node)
lCnt = lS.valcnt
return lS, lCnt, rS, rCnt
def __swapValues(self, node1, a1, node2, a2):
""" Swap any two values in nodes """
if node1 is not node2:
idx1, idx2 = node1.values.index(a1), node2.values.index(a2)
node1.values[idx1], node2.values[idx2] = node2.values[idx2], node1.values[idx1]
def __fixNodeRemove(self, node, parent = -1):
""" Fix deletion """
if node.isEmptyNode():
if node is not self.root:
if parent == -1:
parent = node.parent
if node.isEmptyNode() or not node.isConsistent():
lS, lCnt, rS, rCnt = self.__getSiblings(node)
rSS, lSS = self.__getRightSibling(rS), self.__getLeftSibling(lS)
redistribute = True
if (rS or lS) is not None:
if rCnt == 2 or (rCnt == 1 and rSS != None and rSS.valcnt == 2):
sib = rS
elif lCnt == 2 or (lCnt == 1 and lSS != None and lSS.valcnt == 2):
sib = lS
elif lCnt == 1:
sib, redistribute = lS, False
elif rCnt == 1:
sib, redistribute = rS, False
if redistribute:
# case 1: redistribute
# left and right case
if parent.valcnt == 1:
if node == parent.getLink(0):
parent_val, sib_val = parent.values[0], sib.values[0]
child = sib.chooseChild(sib_val - 1)
elif node == parent.getLink(1):
parent_val, sib_val = parent.values[parent.valcnt - 1], sib.values[sib.valcnt - 1]
child = sib.chooseChild(sib_val + 1)
else:
if sib == parent.getLink(1):
# left
if node == parent.getLink(0):
parent_val, sib_val = parent.values[0], sib.values[0]
child = sib.chooseChild(sib_val - 1)
# right
elif node == parent.getLink(2):
parent_val, sib_val = parent.values[parent.valcnt - 1], sib.values[sib.valcnt - 1]
child = sib.chooseChild(sib_val + 1)
# middle
elif sib == parent.getLink(2):
parent_val, sib_val = parent.values[parent.valcnt - 1], sib.values[0]
child = sib.chooseChild(sib_val - 1)
elif sib == parent.getLink(0):
parent_val, sib_val = parent.values[0], sib.values[sib.valcnt - 1]
child = sib.chooseChild(sib_val + 1)
node.insertValue(parent_val)
parent.removeValue(parent_val)
parent.insertValue(sib_val)
sib.removeValue(sib_val)
if not node.isLeafNode():
# if this is not a leaf node, redistribute the links also
node.addLink(child)
sib.removeLink(child)
next_node = sib
else:
# case 2: merge
if parent.valcnt == 1:
parent_val = parent.values[0]
else:
if sib == parent.getLink(0):
parent_val = parent.values[0]
elif sib == parent.getLink(1):
if sib == rS:
parent_val = parent.values[0]
if sib == lS:
parent_val = parent.values[parent.valcnt - 1]
child = node.getLink(0)
sib.insertValue(parent_val)
parent.removeValue(parent_val)
parent.removeLink(node)
if not node.isLeafNode():
sib.addLink(child)
next_node = parent
self.__fixNodeRemove(next_node, next_node.parent)
else:
# root node
self.root = self.root.getLink(0)
def __fixNodeInsert(self, node):
if not node.isConsistent():
# conflict detected, try to resolve it
if node.isLeafNode() and node is not self.root:
# case for leaf node
node.parent.insertValue(node.values[1])
node.parent.removeLink(node)
# split the node
node.parent.addLink(Node(node.values[0], node.parent))
node.parent.addLink(Node(node.values[node.valcnt - 1], node.parent))
self.__fixNodeInsert(node.parent)
else:
# case for internal node or root node
if node is not self.root:
node.parent.insertValue(node.values[1])
node.parent.removeLink(node)
parent = node.parent
else:
self.root = Node(node.values[1])
parent = self.root
# split the node
leftNode, rightNode = Node(node.values[0], parent), Node(node.values[node.valcnt - 1], parent)
parent.addLink(leftNode).addLink(rightNode)
leftNode.addLink(node.getLink(0)).addLink(node.getLink(1))
rightNode.addLink(node.getLink(2)).addLink(node.getLink(3))
if node is not self.root:
self.__fixNodeInsert(parent)
# interface methods
def contains(self, a):
""" See if we have a given value in our tree """
node = self.findNode(a)
return node if node.contains(a) else None
def findNode(self, a):
""" Find the node which contains the given value """
self.lastSearchDepth = 0
return self.__find(self.root, a)
def findInorderSucc(self, node, a):
""" Returns inorder successor of any node """
self.lastSearchDepth = 0
if node.isLeafNode():
return node
new_node = node.chooseChild(a + 1)
return self.__nextSucc(new_node)
def insertValue(self, a):
""" Inserts a new value to tree and keeps it balanced """
if self.root is None:
self.root = Node(a)
elif a is not None:
node = self.findNode(a)
res = node.contains(a)
if res: return res
# try to insert a new value into existing node
node.insertValue(a)
self.__fixNodeInsert(node)
return self
def insertList(self, xs):
""" Insert a list of values into a tree """
if xs is not None and type(xs) is list:
for item in xs: self.insertValue(item)
def removeValue(self, a):
""" Removes a value from the tree and keeps it balanced """
node = self.findNode(a)
if not node or not node.contains(a):
return None
# swap the value we want to delete with its inorder successor (always leaf)
succ = self.findInorderSucc(node, a)
self.__swapValues(node, a, succ, succ.values[0])
# delete leaf node value
succ.removeValue(a)
# fix tree if needed
self.__fixNodeRemove(succ)
return self
def removeList(self, xs):
""" Deletes a list of values from a tree """
if xs is not None and type(xs) is list:
for item in xs: self.removeValue(item)
|
If you're looking for an API similar to that provided by a 2-3 tree, check out the sortedcontainers module. It implements sorted list, sorted dict, and sorted set data types in pure-Python and is fast-as-C implementations (even faster!). Learn more about sortedcontainers, available on PyPI and github.