Welcome, guest | Sign In | My Account | Store | Cart
# Random 2D Slice Of 4D Mandelbrot Fractal
# FB - 201105231
import math
import random
from PIL import Image
imgx = 512
imgy = 512
image = Image.new("RGB", (imgx, imgy))
# drawing area (xa < xb & ya < yb)
xa = -2.0
xb = 1.0
ya = -1.5
yb = 1.5
maxIt = 256 # max number of iterations allowed
# random rotation angles to convert 2d plane to 4d plane
xy = random.random() * 2.0 * math.pi
xz = random.random() * 2.0 * math.pi
xw = random.random() * 2.0 * math.pi
yz = random.random() * 2.0 * math.pi
yw = random.random() * 2.0 * math.pi
zw = random.random() * 2.0 * math.pi
sxy = math.sin(xy)
cxy = math.cos(xy)
sxz = math.sin(xz)
cxz = math.cos(xz)
sxw = math.sin(xw)
cxw = math.cos(xw)
syz = math.sin(yz)
cyz = math.cos(yz)
syw = math.sin(yw)
cyw = math.cos(yw)
szw = math.sin(zw)
czw = math.cos(zw)
origx = (xa + xb) / 2.0
origy = (ya + yb) / 2.0
for ky in range(imgy):
    b = ky * (yb - ya) / (imgy - 1)  + ya
    for kx in range(imgx):
        a = kx * (xb - xa) / (imgx - 1)  + xa
        x = a
        y = b
        z = 0 # c = 0
        w = 0 # d = 0
        # 4d rotation around center of the plane
        x = x - origx
        y = y - origy
        x0=x*cxy-y*sxy;y=x*sxy+y*cxy;x=x0 # xy-plane rotation
        x0=x*cxz-z*sxz;z=x*sxz+z*cxz;x=x0 # xz-plane rotation 
        x0=x*cxw-z*sxw;w=x*sxw+z*cxw;x=x0 # xw-plane rotation
        y0=y*cyz-z*syz;z=y*syz+z*cyz;y=y0 # yz-plane rotation
        y0=y*cyw-w*syw;w=y*syw+w*cyw;y=y0 # yw-plane rotation
        z0=z*czw-w*szw;w=z*szw+w*czw;z=z0 # zw-plane rotation
        x = x + origx
        y = y + origy
        for i in range(maxIt):
            # iteration using quaternion numbers
            x0 = x * x - y * y - z * z - w * w + a
            y = 2.0 * x * y + b
            z = 2.0 * x * z
            w = 2.0 * x * w
            x = x0
            # iteration using hyper-complex numbers
            # x0 = x * x - y * y - z * z - w * w + a
            # y0 = 2.0 * x * y - 2.0 * z * w + b
            # z0 = 2.0 * x * z - 2.0 * y * w
            # w = 2.0 * x * w + 2.0 * z * y
            # x = x0
            # y = y0
            # z = z0
            s = x * x + y * y + z * z + w * w # 4d absolute value
            if s > 4.0:
                break
        image.putpixel((kx, ky), (i % 4 * 64, i % 8 * 32, i % 16 * 16))
image.save("4D_Mandelbrot_Fractal.png", "PNG")

Diff to Previous Revision

--- revision 1 2011-05-22 22:06:01
+++ revision 2 2011-05-24 03:42:48
@@ -1,10 +1,10 @@
 # Random 2D Slice Of 4D Mandelbrot Fractal
-# FB - 201105227
+# FB - 201105231
 import math
 import random
 from PIL import Image
-imgx = 256
-imgy = 256
+imgx = 512
+imgy = 512
 image = Image.new("RGB", (imgx, imgy))
 # drawing area (xa < xb & ya < yb)
 xa = -2.0
@@ -31,6 +31,8 @@
 cyw = math.cos(yw)
 szw = math.sin(zw)
 czw = math.cos(zw)
+origx = (xa + xb) / 2.0
+origy = (ya + yb) / 2.0
 for ky in range(imgy):
     b = ky * (yb - ya) / (imgy - 1)  + ya
     for kx in range(imgx):
@@ -39,12 +41,17 @@
         y = b
         z = 0 # c = 0
         w = 0 # d = 0
+        # 4d rotation around center of the plane
+        x = x - origx
+        y = y - origy
         x0=x*cxy-y*sxy;y=x*sxy+y*cxy;x=x0 # xy-plane rotation
         x0=x*cxz-z*sxz;z=x*sxz+z*cxz;x=x0 # xz-plane rotation 
         x0=x*cxw-z*sxw;w=x*sxw+z*cxw;x=x0 # xw-plane rotation
         y0=y*cyz-z*syz;z=y*syz+z*cyz;y=y0 # yz-plane rotation
         y0=y*cyw-w*syw;w=y*syw+w*cyw;y=y0 # yw-plane rotation
         z0=z*czw-w*szw;w=z*szw+w*czw;z=z0 # zw-plane rotation
+        x = x + origx
+        y = y + origy
         for i in range(maxIt):
             # iteration using quaternion numbers
             x0 = x * x - y * y - z * z - w * w + a

History