Welcome, guest | Sign In | My Account | Store | Cart

to calculate determinant and manipulate matrices.

Python, 88 lines
 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88``` ```class Point(): def __init__(self,x,y,dim): self.x = x self.y = y self.dim = dim class matrix(object): def __init__(self,mat): self.mat = mat self.row = len(mat) self.col = len(mat[0]) self._matRes = [] self.__s = '' def __str__(self): for i in range(self.row): self.__s += '\n' for j in range(self.col): self.__s += '%g\t' %(self.mat[i][j]) return self.__s def __mul__(self,other): if isinstance(other,int) or isinstance(other,float): for i in range(self.row): for j in range(self.col): self.mat[i][j] *= other return matrix(self.mat) if self.col != other.row: return 'The number of columns of the first matrix must be equal to the number of rows of the second.' self._matRes = [[0 for r in range(other.col)] for c in range(self.row)] for i in range(self.row): for j in range(other.col): for k in range(other.row): self._matRes[i][j] += self.mat[i][k] * other.mat[k][j] return matrix(self._matRes) def __add__(self,other): if not (self.row == other.row) and (self.col == other.col): return 'The number of col is not equal to the number of row' self._matRes = [[0 for r in range(self.col)] for c in range(self.row)] for i in range(self.row): for j in range(self.col): self._matRes[i][j] += self.mat[i][j] + other.mat[i][j] return matrix(self._matRes) def __pow__(self,other): if not isinstance(other,int): return 'only int' if other == 0: return 'Prime matrix' if other < 0: return 'only int' for i in range(1,other+1): if i != other: self.__s += 'matrix(self.mat)*' else: self.__s += 'matrix(self.mat)' return eval(self.__s) def det(self, point): M = point.dim - 1 if len(self.mat) == 2 : return (int(self.mat[0][0]) * int(self.mat[1][1])) - (int(self.mat[0][1]) * int(self.mat[1][0])) s = 0 for row in range(1, point.dim+1): copyli = [] for i in range(1,len(li)): copyli1 = [] for j in range(len(li)) : if (row - 1) != j : copyli1.append(li[i][j]) copyli.append(copyli1) s += (-1) ** (1 + row) * int(li[0][row-1]) * det(copyli, Point(1, row, M)) return s def inverse(self): pass print matrix.det(matrix([[1,2],[2,3]])) #print (matrix([[15,24,33],[21,-34,25]]) * matrix([[15,24],[21,-34],[1,3]]))* matrix([[1,2],[2,3]]) #print (matrix([[1,2,12,33,2,2],[1,2,3,22,1,3],[1,21,3,4,2,4],[111,31,34,2,12,1],[2,33,122,1,3,3],[1,19,90,6,2,4]]))**10 #print ( matrix([[1,2],[2,3]]) * matrix([[1,2],[2,3]])) + matrix([[1,2],[2,3]]) ```

#### 1 comment

hosseini 11 years, 3 months ago

tank you very much I am a student professor razavian!

 Created by Hamidreza Joshaghani on Wed, 27 Apr 2011 (MIT)

### Tags

• (none)
▶ Show machine tags (4)

### Required Modules

• (none specified)