# FB - 201104096 import math # First Order ODE (y' = f(x, y)) Solver using Euler method # xa: initial value of independent variable # xb: final value of independent variable # ya: initial value of dependent variable # n : number of steps (higher the better) # Returns value of y at xb. def Euler(f, xa, xb, ya, n): h = (xb - xa) / float(n) x = xa y = ya for i in range(n): y += h * f(x, y) x += h return y # Second Order ODE (y'' = f(x, y, y')) Solver using Euler method # y1a: initial value of first derivative of dependent variable def Euler2(f, xa, xb, ya, y1a, n): h = (xb - xa) / float(n) x = xa y = ya y1 = y1a for i in range(n): y1 += h * f(x, y, y1) y += h * y1 x += h return y if __name__ == "__main__": print Euler(lambda x, y: math.cos(x) + math.sin(y), 0, 1, 1, 1000) print Euler2(lambda x, y, y1: math.sin(x * y) - y1, 0, 1, 1, 1, 1000)