Welcome, guest | Sign In | My Account | Store | Cart

Dijkstra shortest path algorithm.

Python, 113 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Dijkstra Shortest Path Algorithm
# http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
# FB - 201110296
from heapq import heappush, heappop # for priority queue
pq = []

class node:
    label = ''
    # adjacency list of the node 
    neighbors = [] # list of nodes
    distances = [] # distances to neighbors
    # for Dijkstra
    prevNode = None
    totalDistance = float('Inf')
    visited = False
    # constructor
    def __init__(self, label):
        self.label = label
        self.neighbors = []
        self.distances = []
        self.prevNode = None
        self.totalDistance = float('Inf')
        self.visited = False


# find the shortest paths to all nodes recursively
def dijkstra(node):
    # visit all neighbors and update them if necessary
    for i in range(len(node.neighbors)):
        n = node.neighbors[i]
        d = node.distances[i]
        if n.totalDistance > d + node.totalDistance:
            n.prevNode = node
            n.totalDistance = d + node.totalDistance
            heappush(pq, (n.totalDistance, n))
    node.visited = True

    (d, ne) = heappop(pq)
    if not ne.visited:
        dijkstra(ne)

# get the shortest path to the given node
def route(endNode):
    node = endNode
    labels = [endNode.label]
    # distances = []
    while node.label != node.prevNode.label:
        # distances.append(node.totalDistance - node.prevNode.totalDistance)
        node = node.prevNode
        labels.append(node.label)
    labels.reverse()
    return labels
    # distances.reverse()
    # return (labels, distances)
        
# create a graph
a = node('a')
b = node('b')
c = node('c')
d = node('d')
e = node('e')
f = node('f')
graph = (a, b, c, d, e, f)

# create bidirectional edges of the graph
edges = []
edges.append((b, c, 3))
edges.append((d, e, 1))
edges.append((b, d, 2))
edges.append((c, e, 1))
edges.append((a, b, 1))
edges.append((a, d, 1))
edges.append((c, f, 1))
edges.append((e, f, 3))

# create adjaceny list of neighbors for each node
for edge in edges:
    edge[0].neighbors.append(edge[1])
    edge[0].distances.append(edge[2])
    edge[1].neighbors.append(edge[0])
    edge[1].distances.append(edge[2])

# print the graph
print 'The graph:'
print
for n in graph:
    print 'Node: ', n.label
    print 'Neighbors:'
    for i in range(len(n.neighbors)):
        print n.neighbors[i].label, n.distances[i]
    print

# find the shortest paths to all neighbors starting w/ the given node
startNode = a
print 'Route start node:', startNode.label
startNode.prevNode = startNode
startNode.totalDistance = 0
dijkstra(startNode)

##print
##print 'The graph after Dijkstra:'
##print
##for n in graph:
##    print 'Node:', n.label
##    print 'totalDistance:', n.totalDistance
##    print 'prevNode:', n.prevNode.label
##    print

# print the shortest path to the given node
endNode = f
print 'Route end node:', endNode.label
print 'Route:', route(endNode)
print 'Total distance:', endNode.totalDistance

2 comments

Rob Malo 12 years, 5 months ago  # | flag

Something is flawed in the code. At least if I understand it correctly.

As an example, if you replace lines 56-64 with:

edges.append((b, c, 3))
edges
.append((d, e, 1))
edges
.append((b, d, 2))
edges
.append((c, e, 1))
edges
.append((a, b, 1))
edges
.append((a, d, 1))
edges
.append((c, f, 1))
edges
.append((e, f, 3))

The output of the code is:

Route start node: a 
Route end node: f
Route: ['a', 'b', 'c', 'f']
Total distance: 5

Clearly the shortest route is: ['a','d','e','c','f'] with total distance:4

I'm not sure if there is an elegant fix to this problem. It seems that once the code uses an edge and saves a total distance to that node, it does not have the ability to adjust the total distance if the total distance to the previous node decreases.

FB36 (author) 12 years, 5 months ago  # | flag

Thanks for letting me know. I changed the algorithm to use a priority queue. Now it outputs the correct route (it is not exactly same w/ your answer but still correct):

Route start node: a

Route end node: f

Route: ['a', 'd', 'e', 'c', 'f']

Total distance: 4

Created by FB36 on Mon, 20 Dec 2010 (MIT)
Python recipes (4591)
FB36's recipes (148)

Required Modules

  • (none specified)

Other Information and Tasks