Covers a plane with two types of tiles, (Perose tiles). The pattern is interesting as it is nonperiodic and has a five fold symetry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 | # This progam creates a non periodic tiling of the plane using 'Penrose tiles',
# wich were invented by Roger Penrose.
# Each time it runs it will generate a new random pattern.
# There are an infinite number of them.
# Unlike a periodic tesselation the assembly requires forward planning and
# hence the program searches through various combinations of parts, often
# comming to a dead end and having to backtrack.
# The program has three phases, the first generating the initial layout with
# a simple sharks tooth design
# The second fills in the tiles completely
# The third phase reveals an inner fractal pattern by the process of deflation
# then deflating again over and over
# You must close the progam to stop it.
from __future__ import division
from Tkinter import *
from math import cos, sin, atan2, sqrt, pi
from random import random, shuffle, seed
from numpy import array, dot, transpose
from copy import deepcopy
from sys import getrecursionlimit, setrecursionlimit
nW = 800.0 # change these to make the screen bigger or smaller
nH = 600.0
canvas = Canvas( width = nW, height = nH, bg = 'darkred')
canvas.pack(expand = YES, fill = BOTH)
# setrecursionlimit(10000)
nRecLim = getrecursionlimit()
nScale = 30.0 # sqrt(nW * nH / nRecLim) / nFib #25.0 # change this to make the tile bigger or smaller
nFib = (1.0 + sqrt(5.0))/2.0 # Fibonacci's golden ratio
nSmall = 5 # the smallest possible gap should be 18`
n36 = 36.0 * pi / 180.0
nSin36 = sin(n36)
nCos36 = cos(n36)
n72 = 72.0 * pi / 180.0
nSin72 = sin(n72)
nCos72 = cos(n72)
nSelfX = nScale * nFib * nSin36
nSelfY = nScale * nFib * nCos36
nW2 = nW / 2
nH2 = nH / 2
nTag = 0
nRatioSmall = nScale * nFib / (nFib + 1)
nRatioBig = nScale * nFib**2 / (nFib + 1)
lAlternate = False
def NewTag():
global nTag
nTag += 1
return "TAG%d" %(nTag)
def Scalar(midx, midy, nR, x0, y0):
midx -= x0
midy -= y0
midR = sqrt(midx**2 + midy**2)
if midR == 0:
return [x0, y0]
midx *= nR / midR
midy *= nR / midR
midx += x0
midy += y0
return [midx,midy]
def MidArc(p1, p2, p0, nR):
x0 = p0[0]
y0 = p0[1]
x1 = p1[0]
y1 = p1[1]
x2 = p2[0]
y2 = p2[1]
midx = (x1 + x2) / 2
midy = (y1 + y2) / 2
return Scalar(midx, midy, nR, x0, y0)
def Perimeter(aP, lComplete = False):
points = []
for i in aP:
points += (i[0], i[1])
if lComplete:
points += (aP[0][0], aP[0][1])
return points
def linearTranslation(a1, points, r, a2):
nL = len(points)
p1 = array([a1] * nL, 'f')
q = points - p1
q = transpose(q)
q = dot(r, q)
q = transpose( q)
p2 = array([a2] * nL, 'f')
q = q + p2
return q
class shape:
def GetPoints(self):
pass
def __init__(self, cTag = None):
if cTag == None:
cTag = NewTag()
self.length = [2,1,1,2]
self.GetPoints()
self.points = array(self.points, 'f')
self.vertices = self.points
self.tag = cTag
def draw(self):
v = Perimeter(self.vertices)
v.append(v[0])
v.append(v[1])
canvas.create_line(v, fill = 'orange', tag = self.tag, width = 1)
def drawOutline(self, x, y, n0, nC):
cosTheta = cos(n0)
sinTheta = sin(n0)
r = array([[cosTheta, -sinTheta],[sinTheta,cosTheta]], 'f')
q = linearTranslation(self.points[nC], self.points, r, [x, y])
self.vertices = q
self.draw()
def drawFill(self):
points = Perimeter(self.vertices)
canvas.create_polygon(points, fill = self.colour, tag = self.tag)
def drawComplete(self):
self.drawFill()
self.redArc()
self.blueArc()
def alignWith(self, nodeobj, nCnr2):
p1 = nodeobj.p1
p2 = nodeobj.p2
dx1 = p2[0] - p1[0]
dy1 = p2[1] - p1[1]
nTheta2 = atan2(dy1,dx1)
q1 = self.vertices[nCnr2]
q2 = self.vertices[(nCnr2 - 1)%4]
dx2 = q2[0] - q1[0]
dy2 = q2[1] - q1[1]
nTheta1 = atan2(dy2,dx2)
self.drawOutline(p1[0], p1[1], nTheta2 - nTheta1,nCnr2)
class kite(shape):
def GetPoints(self, cColour = 'brown'):
self.points = [[0,0]
,[nSelfX,nSelfY]
,[0,nScale * nFib]
,[-nSelfX,nSelfY]]
self.colour = cColour
self.angles = [72,72,144,72]
self.type = 'kite'
# shape, corner
self.viable = [[[dart,1],[kite, 0]]
,[[dart,2],[kite, 3]]
,[[dart,3],[kite, 2]]
,[[dart,0],[kite, 1]]]
def draw(self):
pass
def redArc(self):
nR = nRatioBig
p0 = self.vertices[0]
p1 = Scalar(self.vertices[3][0],self.vertices[3][1], nR, p0[0],p0[1])
p5 = Scalar(self.vertices[1][0],self.vertices[1][1], nR, p0[0],p0[1])
p3 = MidArc(p1,p5,p0,nR)
p2 = MidArc(p1,p3,p0,nR)
p4 = MidArc(p3,p5,p0,nR)
aR = Perimeter([p1,p2,p3,p4,p5])
canvas.create_line(aR, fill = 'darkgrey', tag = self.tag, width = 1)
def blueArc(self):
nR = 1 / (1 / nFib + 1) * nScale
p0 = self.vertices[2]
p1 = Scalar(self.vertices[3][0],self.vertices[3][1], nR, p0[0],p0[1])
p9 = Scalar(self.vertices[1][0],self.vertices[1][1], nR, p0[0],p0[1])
p5 = MidArc(p1,p9,p0,nR)
p3 = MidArc(p1,p5,p0,nR)
p7 = MidArc(p5,p9,p0,nR)
p2 = MidArc(p1,p3,p0,nR)
p4 = MidArc(p3,p5,p0,nR)
p6 = MidArc(p5,p7,p0,nR)
p8 = MidArc(p7,p9,p0,nR)
aR = Perimeter([p1,p2,p3,p4,p5,p6,p7,p8,p9])
canvas.create_line(aR, fill = 'cyan', tag = self.tag, width = 1)
def subShapes(self):
subs = []
p0 = list(self.vertices[0])
p1 = list(self.vertices[1])
p2 = list(self.vertices[2])
p3 = list(self.vertices[3])
p4 = Scalar(p3[0],p3[1], nRatioSmall, p0[0],p0[1])
p5 = Scalar(p1[0],p1[1], nRatioSmall, p0[0],p0[1])
p6 = Scalar(p2[0],p2[1], nRatioBig , p0[0],p0[1])
subs.append(SubKiteRight(p3,p6,p2))
subs.append(SubKiteLeft(p3,p6,p4))
subs.append(SubKiteRight(p1,p6,p5))
subs.append(SubKiteLeft(p1,p6,p2))
subs.append(SubDartRight(p6,p0,p5))
subs.append(SubDartLeft(p6,p0,p4))
return subs
class dart(shape):
def GetPoints(self, cColour = 'darkgreen'):
self.points = [[0,0]
,[nSelfX,nSelfY]
,[0,nScale]
,[-nSelfX,nSelfY]]
self.angles = [72,36,216,36]
self.type = 'dart'
self.viable = [[[dart, 0],[kite, 1]]
,[[kite, 2]]
,[[kite, 3]]
,[[dart, 1],[kite, 0]]]
self.colour = cColour
def redArc(self):
nR = nRatioSmall
p0 = self.vertices[0]
p1 = Scalar(self.vertices[3][0],self.vertices[3][1], nR, p0[0],p0[1])
p5 = Scalar(self.vertices[1][0],self.vertices[1][1], nR, p0[0],p0[1])
p3 = MidArc(p1,p5,p0,nR)
p2 = MidArc(p1,p3,p0,nR)
p4 = MidArc(p3,p5,p0,nR)
aR = Perimeter([p1,p2,p3,p4,p5])
canvas.create_line(aR, fill = 'darkgrey', tag = self.tag, width = 1)
def blueArc(self):
nR = 1 / nFib / (1 / nFib + 1) * nScale
p0 = self.vertices[2]
p1 = Scalar(self.vertices[3][0],self.vertices[3][1], nR, p0[0],p0[1])
p9 = Scalar(self.vertices[1][0],self.vertices[1][1], nR, p0[0],p0[1])
p5 = MidArc(p1,p9,p0,nR)
p5[0] = 2 * p0[0] - p5[0] # great arc
p5[1] = 2 * p0[1] - p5[1] # great arc
p3 = MidArc(p1,p5,p0,nR)
p7 = MidArc(p5,p9,p0,nR)
p2 = MidArc(p1,p3,p0,nR)
p4 = MidArc(p3,p5,p0,nR)
p6 = MidArc(p5,p7,p0,nR)
p8 = MidArc(p7,p9,p0,nR)
aR = Perimeter([p1,p2,p3,p4,p5,p6,p7,p8,p9])
canvas.create_line(aR, fill = 'cyan', tag = self.tag, width = 1)
def subShapes(self):
subs = []
p0 = list(self.vertices[0])
p1 = list(self.vertices[1])
p2 = list(self.vertices[2])
p3 = list(self.vertices[3])
p4 = Scalar(p3[0],p3[1], nRatioBig, p0[0],p0[1])
p5 = Scalar(p1[0],p1[1], nRatioBig, p0[0],p0[1])
subs.append(SubKiteRight(p0,p2,p4))
subs.append(SubKiteLeft(p0,p2,p5))
subs.append(SubDartRight(p2,p3,p4))
subs.append(SubDartLeft(p2,p1,p5))
return subs
def AlterBorder(aBorder, temp, nNook, nAligned, nDel, nIns):
cnr1 = nNook
cnr2 = nAligned
if nDel < 3:
# replacement
ang1 = aBorder[cnr1].angle
aBorder[cnr1]= NodeObject(temp, cnr2)
aBorder[cnr1].angle = ang1
aBorder[cnr1].prioritise()
if cnr1 == len(aBorder) - 1:
lClocked = True
else:
lClocked = False
# deletion
cnr3 =(cnr1 + 1) % len(aBorder)
nAdjust = 1
for z in range(nDel):
if cnr3 < len(aBorder) - 1:
aBorder = aBorder[:cnr3] + aBorder[cnr3 + 1:]
elif cnr3 == len(aBorder): # delete first element
aBorder = aBorder[1:]
else: # around the clock
aBorder = aBorder[:cnr3]
# insertion
for nD in range(nIns):
cnr4 = (cnr1 + nD + nAdjust) % len(aBorder)
if lClocked:
cnr4 = nD
node = NodeObject(temp, (cnr2 + nD + 1) % 4)
aBorder.insert(cnr4, node)
return aBorder
def FitsBorder(aBorder, nNook, aV, temp):
nAligned = aV[1]
nL = len(aBorder)
for nBack in range(4):
btest = aBorder[(nNook - nBack) % nL]
angle1 = temp.angles[(nAligned + nBack) % 4]
t = btest.angle - angle1
if t < -nSmall: # conflict
return False
elif t > nSmall: # still room
break
# tight angle fit, test lengths
nTestBorder = (nNook - nBack - 1) % nL
nTestShape = (nAligned + nBack) % 4
btest = aBorder[nTestBorder]
if btest.length <> temp.length[nTestShape]: # length mismatch
return False
for nForward in range(4):
btest = aBorder[(nNook + nForward + 1) % nL]
angle1 = temp.angles[(nAligned - nForward - 1) % 4]
t = btest.angle - angle1
if t < -nSmall: # conflict
return False
elif t > nSmall: # still room
break
# tight angle fit, test lengths
nTestBorder = (nNook + nForward + 1) % nL
nTestShape = (nAligned - nForward - 2) % 4
btest = aBorder[nTestBorder]
if btest.length <> temp.length[nTestShape]: # length mismatch
return False
aBorder[nNook].nBack = nBack
aBorder[nNook].nForward = nForward
return True
def addToBorder(aBorder, nNook, node, aV, AddTile):
nAligned = aV[1]
nL = len(aBorder)
AddTile.alignWith(node, nAligned)
nBack = aBorder[ nNook].nBack
nForward = aBorder[ nNook].nForward
del aBorder[ nNook].nBack
del aBorder[ nNook].nForward
nTest = (nNook - nBack) % nL
btest = aBorder[ nTest]
nAlign = (nAligned + nBack) % 4
angle1 = AddTile.angles[nAlign]
btest.angle -= angle1
btest.prioritise()
btest = aBorder[(nNook + nForward + 1) % nL]
angle1 = AddTile.angles[(nAligned - nForward - 1) % 4]
btest.angle -= angle1
btest.prioritise()
nDel = min(nForward + nBack, 3)
nIns = max(2 - nDel, 0)
aBorder = AlterBorder(aBorder, AddTile, nTest, nAlign, nDel, nIns)
return aBorder
class NodeObject:
def __init__(self, shape, edge):
self.angle = 360 - shape.angles[edge]
self.length = shape.length[edge]
self.p1 = shape.vertices[edge]
self.p2 = shape.vertices[(edge + 1) % 4]
self.edge = edge
self.x = shape.vertices[edge][0]
self.y = shape.vertices[edge][1]
self.dist = sqrt((nW2 - self.x)**2 + (nH2 -self.y)**2)
self.viable = shape.viable[edge]
self.prioritise()
self.shape = shape
def prioritise(self):
self.priority = self.angle + self.dist / nW
def PauseMessage(cText):
global lFinished
lFinished = True
canvas.create_text(nW/2,20,text = cText,fill = 'white', tag = 'pause')
raw_input()
canvas.delete('pause')
def FillPlane(aBorder, level):
# a small delay allows the screen to show
print level, ' of ', nRecLim # when level gets too high the stack will overload
if level >= nRecLim - 50:
print 'The stack has maxed out!'
PauseMessage('The initial pattern is complete, press ENTER to advance.')
return {}
aBorderCopy = deepcopy(aBorder)
nMin = 10000
k = 'all filled'
j = k
for i in aBorderCopy:
if i.x < nW * 0.05 or i.x > nW * 0.95: # dont go off the screen
continue
elif i.y < nH * 0.1 or i.y > nH * 0.9:
continue
elif i.priority < nMin:
j = i
nMin = i.priority
aAdded = []
# by choosing the most sensible place to add to
# there is not such a need for conflict testing.
if j == k: # no more space to fill
print 'complete'
PauseMessage('The initial pattern is complete, press ENTER to advance.')
return {}
b = j
i = aBorderCopy.index(b)
viable = b.viable
shuffle(viable)
while len(viable) > 0:
v = viable[0]
viable = viable[1:]
attempt = v[0]()
if FitsBorder(aBorderCopy, i, v, attempt):
aAdded.append(attempt.tag)
aBorderCopy = addToBorder(aBorderCopy, i, b, v, attempt)
oShapesDict = FillPlane(aBorderCopy, level + 1)
for idtag in aAdded:
canvas.delete(idtag)
if lFinished:
for n in aBorder:
oShapesDict[n.shape.tag] = n.shape
return oShapesDict
# it might be more efficient to do some sort of clean up
# but this is eaisier
aBorderCopy = deepcopy(aBorder)
class SubShape:
def draw(self):
points = Perimeter(self.vertices)
canvas.create_polygon(points, fill = self.colour, tag = cDefTag)
class SubKiteRight(SubShape):
def __init__(self,p0,p1,p2):
self.vertices = deepcopy([p0,p1,p2])
self.colour = 'beige'
def subShapes(self):
subs = []
p0 = self.vertices[0]
p1 = self.vertices[1]
p2 = self.vertices[2]
p3 = Scalar(p2[0],p2[1], nRatioSmall, p0[0],p0[1])
p4 = Scalar(p1[0],p1[1], nRatioBig , p0[0],p0[1])
subs.append(SubKiteRight(p2,p4,p1))
subs.append(SubKiteLeft(p2,p4,p3))
subs.append(SubDartLeft(p4,p0,p3))
return subs
class SubKiteLeft(SubShape):
global lAlternate
def __init__(self,p0,p1,p2):
self.vertices = deepcopy([p0,p1,p2])
self.colour = 'tan'
def subShapes(self):
subs = []
p0 = self.vertices[0]
p1 = self.vertices[1]
p2 = self.vertices[2]
p3 = Scalar(p2[0],p2[1], nRatioSmall, p0[0],p0[1])
p4 = Scalar(p1[0],p1[1], nRatioBig , p0[0],p0[1])
subs.append(SubKiteRight(p2,p4,p3))
subs.append(SubKiteLeft(p2,p4,p1))
subs.append(SubDartRight(p4,p0,p3))
return subs
class SubDartRight(SubShape):
def __init__(self,p0,p1,p2):
self.vertices = deepcopy([p0,p1,p2])
self.colour = 'darkgrey'
def subShapes(self):
subs = []
p0 = self.vertices[0]
p1 = self.vertices[1]
p2 = self.vertices[2]
p3 = Scalar(p1[0],p1[1], nRatioSmall, p0[0],p0[1])
subs.append(SubKiteRight(p1,p2,p3))
subs.append(SubDartRight(p2,p0,p3))
return subs
class SubDartLeft(SubShape):
def __init__(self,p0,p1,p2):
self.vertices = deepcopy([p0,p1,p2])
self.colour = 'grey'
def subShapes(self):
subs = []
p0 = self.vertices[0]
p1 = self.vertices[1]
p2 = self.vertices[2]
p3 = Scalar(p1[0],p1[1], nRatioSmall, p0[0],p0[1])
subs.append(SubKiteLeft(p1,p2,p3))
subs.append(SubDartLeft(p2,p0,p3))
return subs
seed()
aBorder = []
lFinished = False
if random() > 0.5:
temp = kite('first')
else:
temp = dart('first')
temp.drawOutline(nW2, nH2, 0, 0)
for i in range(4):
aBorder.append(NodeObject(temp, i))
oShapesDict = FillPlane(aBorder, 1)
canvas.delete('first')
cDefTag = NewTag()
aSubShapes = []
for s in oShapesDict:
print '#'
oShape = oShapesDict[s]
oShape.drawComplete()
aSubShapes += oShape.subShapes()
while True:
nRatioSmall *= nFib / (nFib + 1)
nRatioBig *= nFib / (nFib + 1)
PauseMessage('press ENTER again to "DEFLATE" the pattern.')
cLastTag = cDefTag
cDefTag = NewTag()
aNewSubs = []
for s in aSubShapes:
s.draw()
print '#'
t = s.subShapes()
aNewSubs += t
canvas.delete(cLastTag)
lAlternate = True
aSubShapes = deepcopy(aNewSubs)
|
Tags: math
You forgot link to Penrose tiles description: http://en.wikipedia.org/wiki/Penrose_tiles
There is a much simpler and general method to draw Penrose tilings by using L-System fractal definitions. You can download an old program called Fractint, select L-System, and load Penrose.l file which includes many Penrose tilings.
But still this is really good work!