A Python implementation of an interpreter for the TRAC programming language developed by Calvin Mooers in the early 1960s. This implementation reconstructs Mooers' original algorithm in Python and supports only a limited number of TRAC primitives for demonstration purposes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | import sys
import unittest
BEGIN_ACTIVE_FUNC = "\x80"
BEGIN_NEUTRAL_FUNC = "\x81"
END_FUNC = "\x8f"
END_ARG = "\x8e"
SEGMENT_GAP = "\xff"
class TracError(Exception):
pass
def list_get(list_, index, default=""):
try:
return list_[index]
except:
return default
def scan_char(list_, pos):
return list_get(list_, pos)
def scan_chars(list_, pos, n):
chars = []
for i in range(n):
c = scan_char(list_, pos + i)
if c:
chars.append(c)
return "".join(chars)
class Processor(object):
def __init__(self, program=""):
self.work = [] # workspace containing current TRAC program
self.sp = 0 # position of scanning pointer in workspace
self.forms = {} # key-value storage for program variables
self.output = "" # last string printed to output by ps for unit testing
self.trace = True # flag for printing trace results of function evaluation
self.primitives = {} # dictionary containing bound methods for TRAC primitives
self.initialize(program)
def tn(self, args):
self.trace = True
return ""
def tf(self, args):
self.trace = False
return ""
def ds(self, args):
key = list_get(args, 0)
value = list_get(args, 1)
self.forms[key] = value
return ""
def ps(self, args):
try:
s = list_get(args, 0)
print s
self.output = s
except:
pass
return ""
def ad(self, args):
try:
num1 = int(list_get(args, 0))
num2 = int(list_get(args, 1))
return str(num1 + num2)
except:
return ""
def su(self, args):
try:
num1 = int(list_get(args, 0))
num2 = int(list_get(args, 1))
return str(num1 - num2)
except:
return ""
def ml(self, args):
try:
num1 = int(list_get(args, 0))
num2 = int(list_get(args, 1))
return str(num1 * num2)
except:
return ""
def dv(self, args):
try:
num1 = int(list_get(args, 0))
num2 = int(list_get(args, 1))
return str(num1 / num2)
except:
return ""
def eq(self, args):
try:
s1 = list_get(args, 0)
s2 = list_get(args, 1)
eq_result = list_get(args, 2)
neq_result = list_get(args, 3)
if s1 == s2:
return eq_result
else:
return neq_result
except:
return ""
def ss(self, args):
try:
form_key = args.pop(0)
form = self.forms[form_key]
form_marked = form
for i in range(len(args)):
arg = args[i]
marker = "%s%s" % (SEGMENT_GAP, chr(i))
form_marked = form_marked.replace(arg, marker)
self.forms[form_key] = form_marked
form_list = []
form_list += form_marked
#print "ss: %s" % (form_list)
return ""
except:
return ""
def cl(self, args):
try:
form_key = args.pop(0)
form = self.forms[form_key]
form_processed = form
for i in range(len(args)):
arg = args[i]
marker = "%s%s" % (SEGMENT_GAP, chr(i))
form_processed = form_processed.replace(marker, arg)
return form_processed
except:
return ""
def initialize(self, program=""):
self.forms = {}
self.work = []
self.reset()
self.work += program
self.primitives = {"ds":self.ds, \
"ps":self.ps, \
"ss":self.ss, \
"cl":self.cl, \
"ad":self.ad, \
"su":self.su, \
"ml":self.ml, \
"dv":self.dv, \
"tn":self.tn, \
"tf":self.tf, \
"eq":self.eq \
}
def run(self):
args = []
handler = self.scan_next_char
while handler:
try:
next_handler, args = handler(args)
except TracError, e:
sys.stderr.write("TracError: %s\n" % e )
next_handler, args = self.reset, []
handler = next_handler
def scan_next_char(self, args): # Rule 1
args = []
#self.db("scan_next_char")
c = scan_char(self.work, self.sp)
if c:
if c == '(':
handler = self.handle_begin_paren
elif c in "\n\r\t":
handler = self.handle_tab_return
elif c == ',':
handler = self.handle_comma
elif c == '#' and scan_chars(self.work, self.sp, 2) == '#(':
handler = self.handle_begin_active_func
elif c == '#' and scan_chars(self.work, self.sp, 3) == '##(':
handler = self.handle_begin_neutral_func
elif c == '#':
handler = self.handle_sharp_sign
elif c == ')':
handler = self.handle_end_paren
else:
args.append(c)
handler = self.handle_char
else:
self.db("exit")
print "Forms: %s" % (self.forms)
print "Output: [%s]" % (self.output)
handler = None
return handler, args
def handle_begin_paren(self, args): # Rule 2
args = []
nested_count = 1
chars = []
matched = False
del self.work[self.sp]
c = scan_char(self.work, self.sp)
while c and not matched:
if c == ')':
nested_count -= 1
if nested_count == 0:
matched = True
break
if not matched:
if c == '(':
nested_count += 1
chars.append(c)
self.sp += 1
c = scan_char(self.work, self.sp)
if matched:
del self.work[self.sp]
else:
raise TracError, "%s: can't find matching end parenthesis" %("handle_begin_paren")
return self.scan_next_char, []
def handle_tab_return(self, args): # Rule 3
args = []
del self.work[self.sp]
self.sp -= 1
return self.inc_scan_pointer_continue, args
def handle_comma(self, args): # Rule 4
args = []
self.work[self.sp] = END_ARG
return self.inc_scan_pointer_continue, args
def handle_begin_active_func(self, args): # Rule 5
args = []
del self.work[self.sp:self.sp + 2]
self.work.insert(self.sp, BEGIN_ACTIVE_FUNC)
self.sp += 1
return self.scan_next_char, args
def handle_begin_neutral_func(self, args): # Rule 6
args = []
del self.work[self.sp:self.sp + 3]
self.work.insert(self.sp, BEGIN_NEUTRAL_FUNC)
self.sp += 1
return self.scan_next_char, args
def handle_sharp_sign(self, args): # Rule 7
args = []
return self.inc_scan_pointer_continue, args
def handle_end_paren(self, args): # Rule 8
#self.db("end_paren_0")
args = []
self.work[self.sp] = END_FUNC
func_begin = self.get_func_begin()
func_result = self.eval_func(func_begin)
func_marker = self.work[func_begin]
args.append(func_begin)
if func_result == "":
handler = self.handle_null_func_result # Rule 10
elif func_marker == BEGIN_ACTIVE_FUNC:
args.append(func_result)
handler = self.handle_active_func_result # Rule 11
elif func_marker == BEGIN_NEUTRAL_FUNC:
args.append(func_result)
handler = self.handle_neutral_func_result # Rule 12
else:
raise TracError, "%s: invalid func_marker" %("handle_end_paren")
#self.db("end_paren_1")
return handler, args
def get_func_begin(self):
pos = self.sp - 1
c = self.work[pos]
while c:
if c == BEGIN_ACTIVE_FUNC or c == BEGIN_NEUTRAL_FUNC:
break
pos -= 1
if pos >= 0:
c = self.work[pos]
else:
raise TracError, "%s: can't find begin function marker" %("get_func_begin")
return pos
def get_func_end(self, func_begin):
pos = func_begin
c = self.work[pos]
while c:
if c == END_FUNC:
break
pos += 1
c = self.work[pos]
return pos
def get_func_args(self, func_begin):
args = []
cur_arg = []
pos = func_begin
c = self.work[pos]
db = []
while c:
db.append(c)
if c == BEGIN_ACTIVE_FUNC or c == BEGIN_NEUTRAL_FUNC:
pass
elif c == END_ARG or c == END_FUNC:
arg = "".join(cur_arg)
args.append(arg)
cur_arg = []
else:
cur_arg.append(c)
if c != END_FUNC:
pos += 1
c = self.work[pos]
db = []
else:
break
return args
def eval_func(self, func_begin):
result = ""
try:
args = self.get_func_args(func_begin)
func_name = args[0]
primitive = self.primitives.get(func_name, None)
if primitive:
result = primitive(args[1:])
if self.trace:
print "eval_func: %s %s -> [%s]" % (func_name, args[1:], result)
except Exception, e:
raise TracError, "%s: failed - %s" %("eval_func", e)
return result
def handle_char(self, args): # Rule 9
c = args[0]
args = []
return self.inc_scan_pointer_continue, args
def handle_null_func_result(self, args): # Rule 10
return self.handle_func_cleanup, args
def handle_active_func_result(self, args): # Rule 11
func_begin = args[0]
func_result = args[1]
args = []
self.work[self.sp+1:self.sp+1] += func_result
args.append(func_begin)
#self.db("handle_active_func_result")
return self.handle_func_cleanup, args
def handle_neutral_func_result(self, args): # Rule 12
func_begin = args[0]
func_result = args[1]
args = []
self.work[self.sp+1:self.sp+1] += func_result
func_end = self.sp
del self.work[func_begin:func_end + 1]
self.sp = func_begin + len(func_result) - 1
#self.db("handle_neutral_func_result")
return self.inc_scan_pointer_continue, args
def handle_func_cleanup(self, args): # Rule 13
if args:
func_begin = args[0]
func_end = self.get_func_end(func_begin)
args = []
del self.work[func_begin:func_end + 1]
self.sp = func_begin - 1
#self.db("handle_func_cleanup")
return self.inc_scan_pointer_continue, args
def reset(self, args=[]): # Rule 14
args = []
self.work = []
self.sp = 0
return self.scan_next_char, args
def inc_scan_pointer_continue(self, args): # Rule 15
args = []
self.sp += 1
return self.scan_next_char, args
def db(self, msg="db"):
print "%s: %s SP:%d %s" % (msg, self.work[0:self.sp], self.sp, self.work[self.sp:])
class TestTrac(unittest.TestCase):
def setUp(self):
pass
def __test(self, program, output):
self.processor = Processor()
self.processor.initialize(program)
self.processor.run()
self.assertEqual(self.processor.output, output)
def test_1_ps(self):
self.__test("#(ps,Hello world)", "Hello world")
def test_2_equal(self):
self.__test("#(ps,#(eq,Cat,Cat,equal,not equal))", "equal")
def test_3_not_equal(self):
self.__test("#(ps,#(eq,Cat,Dog,equal,not equal))", "not equal")
def test_4_ds(self):
self.__test("#(ds,AA,Cat)#(ps,#(cl,AA))", "Cat")
def test_5_protect_parens(self):
self.__test("#(ds,AA,Cat)#(ds,BB,(#(cl,AA)))#(ps,(#(cl,BB)))", "#(cl,BB)")
def test_6_neutral_func(self):
self.__test("#(ds,AA,Cat)#(ds,BB,(#(cl,AA)))#(ps,##(cl,BB))", "#(cl,AA)")
def test_7_indirection(self):
self.__test("#(ds,AA,Cat)#(ds,BB,(#(cl,AA)))#(ps,#(cl,BB))", "Cat")
def test_8_ss(self):
self.__test("#(ds,AA,Hello X)#(ss,AA,X)#(ps,#(cl,AA,world))", "Hello world")
def test_9_factorial(self):
self.__test("""
#(ds,Factorial,(#(eq,X,1,1,(#(ml,X,#(cl,Factorial,#(su,X,1)))))))
#(ss,Factorial,X)
#(ps,#(cl,Factorial,5))
""", "120")
if __name__ == "__main__":
print __file__
unittest.main()
|
TRAC is a functional language based on strings similar in capability and appearance to LISP. I first read about TRAC in Ted Nelson's epochal "Computer Lib" book. Nelson recommended TRAC as an excellent programming language for beginners, because of its simplicity, and for advanced programmers, because of its flexibility.
TRAC's creator, Calvin Mooers, was a computing pioneer who in 1962 envisioned something he called the "reactive typewriter" which foreshadowed the personal computer. The TRAC language was to be the basis for the software supporting the reactive typewriter. A person skilled in TRAC could interact with a computer from the command line to store and retrieve information, run other programs, and write additional programs.
Peter Deutsch, of Xerox Parc and Sun fame, programmed the debut version of TRAC in PDP-1 assembler. It ran in a user space of 4K 18-bit words with 2K to spare. TRAC had something of a cult following in those early days, but as memory became plentiful and the competition between languages sharpened, TRAC lost traction. Calvin Mooers died in 1994 and since then TRAC has all but vanished.
In this recipe I reconstruct a TRAC interpreter based on Mooers' written description of that PDP-1 version in his ACM paper: "TRAC, A Procedure-Describing Language for the Reactive Typewriter" (1964). The largest web cache of materials on TRAC can be found at http://www.scribd.com/people/documents/73641-trac-fan. I also referred to the TRAC chapter in "Etudes for Programmers" (out of print) by Charles Wetherell and used some of his TRAC code examples as test cases in my unit testing.
By today's standards, the programming specification of TRAC is clumsy -- relying extensively on gotos for instance . But it is remarkable how much functionality Mooers and Deutsch squeezed out of one buffer, a pointer, and a handful of special characters and markers plus a minimal amount of code to support a real computer language.
Mooers specified the TRAC algorithm in terms of 15 rules. Each rule acts on the buffer and the scan pointer, then concludes literally with "Go to rule X." I wrote a handler for each rule and simulated the gotos by having each handler return its next handler and arguments to the command loop. (However, I didn't go so far as to make everything global. Except for some buffer utilities, I encapsulate the interpreter into the Processor class.)
The basic action of a TRAC interpeter is to scan incoming characters for functions, marked by begin and end parentheseses with interior arguments delimited by commas, in which the first argument is the name of a primitive function. The characters to be scanned are called the active string. The characters that have been processed are called the neutral string. In my implementation the neutral string and the active string are the left and right sides of buffer while the scan pointer points to the division between the two strings.
As each character from the active string is scanned, it is either deleted or moved to the neutral string. When an end parenthesis is scanned and a new function is complete, the function is evaluated then deleted from the neutral string, and its result is either placed on the neutral string, where the result becomes an argument for the next function, or it is placed back on the active string to be scanned again.
Compared to the complex workings of most programming languages, TRAC's mechanism is simple but with it almost anything can be accomplished.
It would be interesting to rewrite this interpreter with modern techniques and to implement the rest of the primitives, as well as to set up TRAC to run interactively. Here I implemented just enough of the primitives to validate TRAC processing and to run a small TRAC program which computes the factorial of 5.
I started programming with Trac at age 10, in 1968, on a PDP-8 with 4K of 12-bit words; I posted some reminiscences at http://nats-tech.blogspot.com/2013/07/the-land-of-trac.html
I just learned Python, and your post inspired me to finally write a "Trac processor" (interpreter); I did use modern techniques, implement the primitives, and make it interactive. I posted it on GitHub, at https://github.com/natkuhn/Trac-in-Python. (I didn't see your other implementations until after I'd finished).
Thanks for launching me on an interesting adventure!
Nat Kuhn