Welcome, guest | Sign In | My Account | Store | Cart
"""
 Topic: prime algorithms.
 Here is an example output of this script:

 Totally free. No warranty.

Python 3.1.2 (r312:79149, Mar 21 2010, 00:41:52) [MSC v.1500 32 bit (Intel)]

 [calc_slower]
 seeking primes between (0..100000) ...
 ...profiling of 'create_primes_1': tooks 6.974707 seconds
 ...profiling of 'create_primes_2': tooks 0.195253 seconds
 ...profiling of 'create_primes_3': tooks 0.090312 seconds
 ...profiling of 'create_primes_4': tooks 0.062241 seconds
 ...profiling of 'create_primes_5': tooks 0.046717 seconds
 ...profiling of 'create_primes_6': tooks 0.024859 seconds
 done - 9592 primes found.

 [calc_medium]
 seeking primes between (0..1000000) ...
 ...profiling of 'create_primes_2': tooks 4.662721 seconds
 ...profiling of 'create_primes_3': tooks 1.133545 seconds
 done - 78498 primes found.

 [calc_faster]
 seeking primes between (0..10000000) ...
 ...profiling of 'create_primes_3': tooks 13.872371 seconds
 ...profiling of 'create_primes_4': tooks 7.766646 seconds
 ...profiling of 'create_primes_5': tooks 6.069688 seconds
 done - 664579 primes found.

Are there no better solutions? ... smile ... Of course there are many!
But unfortunately some of them require a much better understanding in
math and I'm afraid (for myself) that some explanations are not simple
enough so I can present them here.
"""
import sys
import time
import math

def profile(function):
    """ intended to be used as decorator for a function or a method to check
        the execution time """

    def decorate(args):
        """ concrete decorator measuring the execution time of
            given function or method """
        start = time.clock()
        result = function(args)
        print("...profiling of '%s': tooks %f seconds" \
              % (function.__name__, time.clock()-start))
        #print("  -> %s" % (function.__doc__))
        return result
    return decorate


def is_prime(val):
    """ simple check for a prime value.
        Note: as a function called several time it is expensive. """
    if val <= 1:
        return False
    if val == 2:
        return True
    if val % 2 == 0:
        return False

    for divisor in range(3, int(math.sqrt(val))+1, 2):
        if val % divisor == 0:
            return False

    return True


@profile
def create_primes_1(max_n):
    """ creating primes up to a maximum value. The even numbers are not
        touched. The primes itself are used to check for possible division. """
    primes = []
    for val in range(3, max_n+1, 2):
        found = False
        for divisor in primes:
            if val % divisor == 0:
                found = True
                break

        if not found:
            primes.append(val)
    return [2] + primes


@profile
def create_primes_2(max_n):
    """ creating primes up to a max. value calling 'is_prime' for each value. """
    primes = [2]+[val for val in range(3, max_n+1, 2) if is_prime(val)]
    return primes

@profile
def create_primes_3(max_n):
    """ using sieve of sundaram:
        http://en.wikipedia.org/wiki/Sieve_of_Sundaram
        The description was really understandable   """
    limit    = max_n + 1
    sieve    = [True] * (limit)
    sieve[1] = False

    for i in range(1, limit//2):
        f = 2 * i + 1
        for j in range(i, limit//2):
            k = i + j * f
            if k <= max_n:
                sieve[k] = False
            else:
                break

    return [2,3]+[2*k+1 for k in range(1, int(max_n/2)) if sieve[k]]

@profile
def create_primes_4(max_n):
    """ creating primes up to a maximum value using a sieve algorithm. All
        multiples of a prime are flagged as 'no prime'. In addition there
        is an optimization by ignoring values flagged as none prime when
        proceeding to next value."""
    sieve = [True] * (max_n+1) # default: all are primes
    sieve[0] = False           # init:    0 is not a prime
    sieve[1] = False           # init:    1 is not a prime

    val = 2
    while val <= max_n:
        factor = val
        # strike out values not being a prime
        noprime = val * factor
        while noprime <= max_n:
            sieve[noprime] = False
            factor += 1
            noprime = val * factor
        # next value
        val += 1
        while val <= max_n and sieve[val] == False:
            val += 1

    return [n for n in range(max_n) if sieve[n] == True]


@profile
def create_primes_5(max_n):
    """ creating primes up to a maximum value using a sieve algorithm. All
        multiples of a prime are flagged as 'no prime'. In addition there
        is an optimization by ignoring values flagged as none prime when
        proceeding to next value."""
    sieve  = [False, True] * (int(max_n / 2))
    sieve += [True]

    if not max_n % 2 == 0:
        sieve += [False]


    sieve[1] = False
    sieve[2] = True
    primes   = [2]

    val = 3
    while val <= max_n:
        # now we have one prime
        primes.append(val)
        # strike out values not being a prime
        noprime = val + val
        while noprime <= max_n:
            sieve[noprime] = False
            noprime += val
        # next value
        val += 1
        while val <= max_n and sieve[val] == False:
            val += 1

    return primes


@profile
def create_primes_6(max_n):
    """ creating primes up to a maximum value using a sieve algorithm. All
        multiples of a prime are flagged as 'no prime'. In addition there
        is an optimization by ignoring values flagged as none prime when
        proceeding to next value."""
    sieve  = [False, True] * (max_n // 2)
    sieve += [False]

    sieve[1] = False
    sieve[2] = True
    primes   = [2]

    val = 3
    while val <= max_n:
        # now we have one prime
        primes.append(val)
        # strike out values not being a prime
        offset  = val * 2
        noprime = val + offset
        while noprime <= max_n:
            sieve[noprime] = False
            noprime += offset
        # next value
        val += 2
        while val <= max_n:
            if not sieve[val]:
                val += 2
            else:
                break

    return primes


def calc_slower(max_n):
    """ scenario I - displaying relation and validate results """
    print("\n[%s]" % (sys._getframe().f_code.co_name))
    print("seeking primes between (0..%d) ..." % (max_n))
    primes1 = create_primes_1(max_n)
    primes2 = create_primes_2(max_n)
    primes3 = create_primes_3(max_n)
    primes4 = create_primes_4(max_n)
    primes5 = create_primes_5(max_n)
    primes6 = create_primes_6(max_n)

    assert primes1 == primes2 == primes3 == primes4 == primes5 == primes6
    print("done - %d primes found." % (len(primes4)))


def calc_medium(max_n):
    """ scenario II - testing 'is_prime' alone """
    print("\n[%s]" % (sys._getframe().f_code.co_name))
    print("seeking primes between (0..%d) ..." % (max_n))
    primes2 = create_primes_2(max_n)
    primes3 = create_primes_3(max_n)
    print("done - %d primes found." % (len(primes2)))


def calc_faster(max_n):
    """ scenario III - testing sieve alone """
    print("\n[%s]" % (sys._getframe().f_code.co_name))
    print("seeking primes between (0..%d) ..." % (max_n))
    primes3 = create_primes_3(max_n)
    primes4 = create_primes_4(max_n)
    primes5 = create_primes_5(max_n)
    print("done - %d primes found." % (len(primes4)))

if __name__ == "__main__":
    print("Python %s" % (sys.version))
    max_n = 100000
    calc_slower(max_n      )
    calc_medium(max_n *  10)
    calc_faster(max_n * 100)

Diff to Previous Revision

--- revision 3 2010-08-06 05:56:11
+++ revision 4 2010-08-06 11:20:34
@@ -4,47 +4,52 @@
 
  Totally free. No warranty.
 
- Python 2.6 (r26:66714, Dec  3 2008, 10:55:18) 
- [GCC 4.3.2 [gcc-4_3-branch revision 141291]]
- [calc1]
- seeking primes between (0..50000) ...
- profiling of 'create_primes_1': tooks 2.310000 seconds
- profiling of 'create_primes_2': tooks 0.170000 seconds
- profiling of 'create_primes_3': tooks 0.050000 seconds
- profiling of 'create_primes_4': tooks 0.040000 seconds
- profiling of 'create_primes_5': tooks 0.020000 seconds
- done - 5133 primes found.
- [calc2]
- seeking primes between (0..500000) ...
- profiling of 'create_primes_2': tooks 3.500000 seconds
- done - 41538 primes found.
- [calc3]
+Python 3.1.2 (r312:79149, Mar 21 2010, 00:41:52) [MSC v.1500 32 bit (Intel)]
+
+ [calc_slower]
+ seeking primes between (0..100000) ...
+ ...profiling of 'create_primes_1': tooks 6.974707 seconds
+ ...profiling of 'create_primes_2': tooks 0.195253 seconds
+ ...profiling of 'create_primes_3': tooks 0.090312 seconds
+ ...profiling of 'create_primes_4': tooks 0.062241 seconds
+ ...profiling of 'create_primes_5': tooks 0.046717 seconds
+ ...profiling of 'create_primes_6': tooks 0.024859 seconds
+ done - 9592 primes found.
+
+ [calc_medium]
+ seeking primes between (0..1000000) ...
+ ...profiling of 'create_primes_2': tooks 4.662721 seconds
+ ...profiling of 'create_primes_3': tooks 1.133545 seconds
+ done - 78498 primes found.
+
+ [calc_faster]
  seeking primes between (0..10000000) ...
- profiling of 'create_primes_4': tooks 10.660000 seconds
- profiling of 'create_primes_5': tooks 5.620000 seconds
+ ...profiling of 'create_primes_3': tooks 13.872371 seconds
+ ...profiling of 'create_primes_4': tooks 7.766646 seconds
+ ...profiling of 'create_primes_5': tooks 6.069688 seconds
  done - 664579 primes found.
 
- Are there no better solutions? ... smile ... Of course there are many!
- But unfortunately some of them require a much better understanding in
- math and I'm afraid (for myself) that some explanations are not simple
- enough so I can present them here.
+Are there no better solutions? ... smile ... Of course there are many!
+But unfortunately some of them require a much better understanding in
+math and I'm afraid (for myself) that some explanations are not simple
+enough so I can present them here.
 """
 import sys
 import time
 import math
 
-
 def profile(function):
-    """ intended to be used as decorator for a function or
-        a method to check the execution time """
+    """ intended to be used as decorator for a function or a method to check
+        the execution time """
 
     def decorate(args):
         """ concrete decorator measuring the execution time of
             given function or method """
         start = time.clock()
         result = function(args)
-        print("profiling of '%s': tooks %f seconds" \
+        print("...profiling of '%s': tooks %f seconds" \
               % (function.__name__, time.clock()-start))
+        #print("  -> %s" % (function.__doc__))
         return result
     return decorate
 
@@ -59,19 +64,17 @@
     if val % 2 == 0:
         return False
 
-    limit = int(math.sqrt(val))
-
-    for divisor in range(3, limit+1, 2):
+    for divisor in range(3, int(math.sqrt(val))+1, 2):
         if val % divisor == 0:
             return False
+
     return True
 
 
 @profile
 def create_primes_1(max_n):
-    """ creating primes up to a maximum value. The even numbers
-        are not touched. The primes itself are used to check for
-        possible division. """
+    """ creating primes up to a maximum value. The even numbers are not
+        touched. The primes itself are used to check for possible division. """
     primes = []
     for val in range(3, max_n+1, 2):
         found = False
@@ -87,19 +90,36 @@
 
 @profile
 def create_primes_2(max_n):
-    """ creating primes up to a maximum value
-        calling 'is_prime' for each value. """
+    """ creating primes up to a max. value calling 'is_prime' for each value. """
     primes = [2]+[val for val in range(3, max_n+1, 2) if is_prime(val)]
     return primes
 
-
 @profile
 def create_primes_3(max_n):
-    """ creating primes up to a maximum value using
-        a sieve algorithm. All multiples of a prime
-        are flagged as 'no prime'. In addition there
-        is an optimization by ignoring values flagged
-        as none prime when proceeding to next value."""
+    """ using sieve of sundaram:
+        http://en.wikipedia.org/wiki/Sieve_of_Sundaram
+        The description was really understandable   """
+    limit    = max_n + 1
+    sieve    = [True] * (limit)
+    sieve[1] = False
+
+    for i in range(1, limit//2):
+        f = 2 * i + 1
+        for j in range(i, limit//2):
+            k = i + j * f
+            if k <= max_n:
+                sieve[k] = False
+            else:
+                break
+
+    return [2,3]+[2*k+1 for k in range(1, int(max_n/2)) if sieve[k]]
+
+@profile
+def create_primes_4(max_n):
+    """ creating primes up to a maximum value using a sieve algorithm. All
+        multiples of a prime are flagged as 'no prime'. In addition there
+        is an optimization by ignoring values flagged as none prime when
+        proceeding to next value."""
     sieve = [True] * (max_n+1) # default: all are primes
     sieve[0] = False           # init:    0 is not a prime
     sieve[1] = False           # init:    1 is not a prime
@@ -122,14 +142,17 @@
 
 
 @profile
-def create_primes_4(max_n):
-    """ creating primes up to a maximum value using
-        a sieve algorithm. All multiples of a prime
-        are flagged as 'no prime'. In addition there
-        is an optimization by ignoring values flagged
-        as none prime when proceeding to next value."""
-    sieve  = [False, True] * (max_n // 2)
+def create_primes_5(max_n):
+    """ creating primes up to a maximum value using a sieve algorithm. All
+        multiples of a prime are flagged as 'no prime'. In addition there
+        is an optimization by ignoring values flagged as none prime when
+        proceeding to next value."""
+    sieve  = [False, True] * (int(max_n / 2))
     sieve += [True]
+
+    if not max_n % 2 == 0:
+        sieve += [False]
+
 
     sieve[1] = False
     sieve[2] = True
@@ -153,12 +176,11 @@
 
 
 @profile
-def create_primes_5(max_n):
-    """ creating primes up to a maximum value using
-        a sieve algorithm. All multiples of a prime
-        are flagged as 'no prime'. In addition there
-        is an optimization by ignoring values flagged
-        as none prime when proceeding to next value."""
+def create_primes_6(max_n):
+    """ creating primes up to a maximum value using a sieve algorithm. All
+        multiples of a prime are flagged as 'no prime'. In addition there
+        is an optimization by ignoring values flagged as none prime when
+        proceeding to next value."""
     sieve  = [False, True] * (max_n // 2)
     sieve += [False]
 
@@ -178,44 +200,51 @@
             noprime += offset
         # next value
         val += 2
-        while val <= max_n and not sieve[val]:
-            val += 2
+        while val <= max_n:
+            if not sieve[val]:
+                val += 2
+            else:
+                break
 
     return primes
 
 
-def calc1(max_n):
+def calc_slower(max_n):
     """ scenario I - displaying relation and validate results """
-    print("[calc1]")
+    print("\n[%s]" % (sys._getframe().f_code.co_name))
     print("seeking primes between (0..%d) ..." % (max_n))
     primes1 = create_primes_1(max_n)
     primes2 = create_primes_2(max_n)
     primes3 = create_primes_3(max_n)
     primes4 = create_primes_4(max_n)
     primes5 = create_primes_5(max_n)
-
-    assert primes1 == primes2 == primes3 == primes4 == primes5
+    primes6 = create_primes_6(max_n)
+
+    assert primes1 == primes2 == primes3 == primes4 == primes5 == primes6
     print("done - %d primes found." % (len(primes4)))
 
 
-def calc2(max_n):
+def calc_medium(max_n):
     """ scenario II - testing 'is_prime' alone """
-    print("[calc2]")
+    print("\n[%s]" % (sys._getframe().f_code.co_name))
     print("seeking primes between (0..%d) ..." % (max_n))
-    primes = create_primes_2(max_n)
-    print("done - %d primes found." % (len(primes)))
-
-
-def calc3(max_n):
+    primes2 = create_primes_2(max_n)
+    primes3 = create_primes_3(max_n)
+    print("done - %d primes found." % (len(primes2)))
+
+
+def calc_faster(max_n):
     """ scenario III - testing sieve alone """
-    print("[calc3]")
+    print("\n[%s]" % (sys._getframe().f_code.co_name))
     print("seeking primes between (0..%d) ..." % (max_n))
+    primes3 = create_primes_3(max_n)
     primes4 = create_primes_4(max_n)
     primes5 = create_primes_5(max_n)
     print("done - %d primes found." % (len(primes4)))
 
 if __name__ == "__main__":
     print("Python %s" % (sys.version))
-    calc1(50000)
-    calc2(500000)
-    calc3(10000000)
+    max_n = 100000
+    calc_slower(max_n      )
+    calc_medium(max_n *  10)
+    calc_faster(max_n * 100)

History