It generates a fractal from any given IFS definition (Fractint style).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | # IFS fractals
# FB - 201003221
from PIL import Image
import random
### Fractint IFS definition of Fern
##mat=[[0.0,0.0,0.0,0.16,0.0,0.0,0.01],
## [0.85,0.04,-0.04,0.85,0.0,1.6,0.85],
## [0.2,-0.26,0.23,0.22,0.0,1.6,0.07],
## [-0.15,0.28,0.26,0.24,0.0,0.44,0.07]]
### Fractint IFS definition of Dragon
##mat = [[0.824074, 0.281482, -0.212346, 0.864198, -1.882290, -0.110607, 0.787473],
## [0.088272, 0.520988, -0.463889, -0.377778, 0.785360, 8.095795, 0.212527]]
### Levy C curve
##mat = [[0.5, -0.5, 0.5, 0.5, 0.0, 0.0, 0.5],
## [0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5]]
# Levy Dragon
mat = [[0.5, -0.5, 0.5, 0.5, 0.0, 0.0, 0.5],
[-0.5, -0.5, 0.5, -0.5, 1.0, 0.0, 0.5]]
# image size
imgx = 512
imgy = 512 # will be auto-re-adjusted
m = len(mat)
# find the xmin, xmax, ymin, ymax
x = mat[0][4]
y = mat[0][5]
#
xa = x
xb = x
ya = y
yb = y
#
for k in range(imgx * imgy):
p=random.random()
psum = 0.0
for i in range(m):
psum += mat[i][6]
if p <= psum:
break
x0 = x * mat[i][0] + y * mat[i][1] + mat[i][4]
y = x * mat[i][2] + y * mat[i][3] + mat[i][5]
x = x0
#
if x < xa:
xa = x
if x > xb:
xb = x
if y < ya:
ya = y
if y > yb:
yb = y
# drawing
imgy = round(imgy * (yb - ya) / (xb - xa)) # auto-re-adjust the aspect ratio
image = Image.new("L", (imgx, imgy))
x=0.0
y=0.0
for k in range(imgx * imgy):
p=random.random()
psum = 0.0
for i in range(m):
psum += mat[i][6]
if p <= psum:
break
x0 = x * mat[i][0] + y * mat[i][1] + mat[i][4]
y = x * mat[i][2] + y * mat[i][3] + mat[i][5]
x = x0
jx = int((x - xa) / (xb - xa) * (imgx - 1))
jy = (imgy - 1) - int((y - ya) / (yb - ya) * (imgy - 1))
image.putpixel((jx, jy), 255)
image.save("IFS_.png", "PNG")
|
I tested it out with the Fern and the Dragon. Looks nice!
If anyone interested, download an old (DOS/Win) version of Fractint zip file from http://spanky.triumf.ca/www/fractint/getting.html, extract the fractint.ifs file from it to get many more IFS fractal definitions (which easily can be converted to draw w/ this code).