Binary Matrix Fractals using iteration method. It can produce a fractal from any given binary matrix pattern.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | # Binary Matrix Fractals using iteration method
# FB - 201003184
from PIL import Image
imgx = 512
imgy = 512
image = Image.new("RGB", (imgx, imgy))
### Sierpinski triangle
##bm = [[1,0], \
## [1,1]]
# Sierpinski square
bm = [[1,1,1], \
[1,0,1], \
[1,1,1]]
### Snowflake
##bm = [[1,1,0], \
## [1,0,1], \
## [0,1,1]]
### Hexaflake
##bm = [[1,1,0], \
## [1,1,1], \
## [0,1,1]]
### A spiral fractal
##bm = [[0,0,1,1,0], \
## [1,0,1,0,0], \
## [1,1,1,1,1], \
## [0,0,1,0,1], \
## [0,1,1,0,0]]
nx = len(bm[0])
ny = len(bm)
maxIt = 16 # max iterations allowed
for ky in range(imgy):
for kx in range(imgx):
x = float(kx) / imgx * nx
y = float(ky) / imgy * ny
for i in range(maxIt):
ix = int(x)
iy = int(y)
if bm[int(y)][int(x)] == 0:
break
x = (x - ix) * nx
y = (y - iy) * ny
r = i % 4 * 64
g = i % 8 * 32
b = i % 16 * 16
image.putpixel((kx, ky), b * 65536 + g * 256 + r)
image.save("binMatItFr.png", "PNG")
|