Welcome, guest | Sign In | My Account | Store | Cart
#On the name of ALLAH and may the blessing and peace of Allah 
#be upon the Messenger of Allah Mohamed Salla Allahu Aliahi Wassalam.
#Author : Fouad Teniou
#Date : 23/02/10
#version :2.6

"""
Pi_approximation uses the subinterval_length function and return
its value and yield all the points values while using the subinterval_point
function and Pi function compute Pi approximation with 16 decimal places
the greater the value of the number the more precise is Pi value
"""


class Pi_Approximation(object):
   
"""
    Class that represent Pi approximation
    """

   
def __init__(self, number):
       
"""
        Pi_Approximation constructor takes the number constant
        """

       
self.number = number
       
   
def subinterval_length(self):
       
"""
        Compute subinterval_length
        """

        sub_length
= 2/float(self.number)
       
return sub_length
   
   
def subinterval_point(self):
       
"""
        Compute the value of each point
        """


       
#attempt to yield all the Xk points values using the subinterval_point        
       
try:
           
for item in range(1,self.number + 1):
                sub_point
= -1 + ((item - 1/2.0)* Pi_Approximation.subinterval_length(self))
               
yield sub_point
       
       
#Raise TypeError if input is not numerical
       
except TypeError:
           
print "\n<The entered value is not a number"
   
   
def Pi(self):
       
"""
        Computing Pi value.
        """


       
#attempt to Approximate Pi for a given value        
       
try:
 
            my_sum
= 0    #Set my_sum to 0
           
           
# using subinterval_point function to compute Pi approximation.
           
# the greater the value of the number the more accurate result
           
for self.point in Pi_Approximation.subinterval_point(self):
           
               
self.pi_X = pow((1-self.point**2),0.5)
                my_sum
+= self.pi_X
                pi
= (my_sum * Pi_Approximation.subinterval_length(self))*2
               
yield repr(pi)
               
       
#Raise TypeError if input is not numerical
       
except TypeError:
           
print  "\n<The entered value is not a number"

if __name__ == '__main__':
   
for arg in xrange(600000,2700000,300000):
   
        pi
= Pi_Approximation(arg)
       
for i in pi.Pi():
           
pass
       
print i

#######################################################################
# FT python "C:\Users\Pi1.py"
#
# 3.1415926556860203
# 3.1415926547308004
# 3.1415926543309367
# 3.1415926541200871
# 3.1415926539930723
# 3.141592653909842
# 3.14159265385199
##########################################################################################

#Version : Python 3.2

#class Pi_Approximation(object):
#    """
#    Class that represent Pi approximation
#    """
#    def __init__(self, number):
#        """
#        Pi_Approximation constructor takes the number constant
#        """
#        self.number = number
#        
#    def subinterval_length(self):
#        """
#        Compute subinterval_length
#        """
#        sub_length = 2/float(self.number)
#        return sub_length
#    
#    def subinterval_point(self):
#        """
#        Compute the value of each point
#        """
#
#        #attempt to yield all the Xk points values using the subinterval_point        
#        try:
#            for item in range(1,self.number + 1):
#                sub_point = -1 + ((item - 1/2.0)* Pi_Approximation.subinterval_length(self))
#                yield sub_point
#        
#        #Raise TypeError if input is not numerical
#        except TypeError:
#            print("\n<The entered value is not a number")
#    
#    def Pi(self):
#        """
#        Computing Pi value.
#        """
#
#        #attempt to Approximate Pi for a given value      
#        try:
#
#            my_sum = 0    #Set my_sum to 0
#            
#            # using subinterval_point function to compute Pi approximation.
#            # the greater the value of the number the more accurate result
#            for self.point in Pi_Approximation.subinterval_point(self):
#            
#                self.pi_X = pow((1-self.point**2),0.5)
#                my_sum += self.pi_X
#                pi = (my_sum * Pi_Approximation.subinterval_length(self))*2
#                yield ascii(pi)
#                
#        #Raise TypeError if input is not numerical
#        except TypeError:
#            print("\n<The entered value is not a number")
#
#if __name__ == '__main__':
#  
#    for j in range(600000,2700000,300000):
#        pi = Pi_Approximation(j)
#
#        for i in pi.Pi():
#            pass
#        print (i)

Diff to Previous Revision

--- revision 2 2011-01-27 12:44:46
+++ revision 3 2011-01-27 12:50:56
@@ -150,3 +150,4 @@
 
#
 
#        for i in pi.Pi():
 
#            pass
+#        print (i)

History