This code is implementation of Pollard Rho prime factorization. As i am a bit new in python so further improvement is appreciated.Also added Brent variant.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | # To change this template, choose Tools | Templates
# and open the template in the editor.
__author__="Mukesh Tiwari"
__date__ ="$Feb 10, 2010 1:35:26 AM$"
import random
from Queue import Queue
def gcd(a,b):
while b:
a,b=b,a%b
return a
def rabin_miller(p):
if(p<2):
return False
if(p!=2 and p%2==0):
return False
s=p-1
while(s%2==0):
s>>=1
for i in xrange(10):
a=random.randrange(p-1)+1
temp=s
mod=pow(a,temp,p)
while(temp!=p-1 and mod!=1 and mod!=p-1):
mod=(mod*mod)%p
temp=temp*2
if(mod!=p-1 and temp%2==0):
return False
return True
def brent(n):
if(n%2==0):
return 2;
x,c,m=random.randrange(0,n),random.randrange(1,n),random.randrange(1,n)
y,r,q=x,1,1
g,ys=0,0
while(True):
x=y
for i in range(r):
y,k=(y*y+c)%n,0
while(True):
ys=y
for i in range(min(m,r-k)):
y,q=(y*y+c)%n,q*abs(x-y)%n
g,k=gcd(q,n),k+m
if(k>= r or g>1):break
r=2*r
if(g>1):break
if(g==n):
while(True):
ys,g=(x*x+c)%n,gcd(abs(x-ys),n)
if(g>1):break
return g
def pollard(n):
if(n%2==0):
return 2;
x=random.randrange(2,1000000)
c=random.randrange(2,1000000)
y=x
d=1
while(d==1):
x=(x*x+c)%n
y=(y*y+c)%n
y=(y*y+c)%n
d=gcd(x-y,n)
if(d==n):
break;
return d;
def factor(n):
#if(rabin_miller(n)):
# print n
# return
#d=pollard(n)
#if(d!=n):
# factor(d)
# factor(n/d)
#else:
# factor(n)
Q_1=Queue()
Q_2=[]
Q_1.put(n)
while(not Q_1.empty()):
l=Q_1.get()
if(rabin_miller(l)):
Q_2.append(l)
continue
d=pollard(l)
if(d==l):Q_1.put(l)
else:
Q_1.put(d)
Q_1.put(l/d)
return Q_2
if __name__ == "__main__":
while(True):
n=input();
L=factor(n)
L.sort()
i=0
while(i<len(L)):
cnt=L.count(L[i])
print L[i],'^',cnt
i+=cnt
|
Tags: algorithm, algorithms