Welcome, guest | Sign In | My Account | Store | Cart

This is a revisiting of Recipe 502216. All the code is new in this implementation, and the concept has been advanced into something akin to a screensaver. Development has ended on this version until work can be done on a third version that takes the to-do lists into account in a more structured way. Feel free to modify this code as you wish (as someone apparently did in the original recipe). If nothing else, it can serve as a short diversion from the predictability of life. Enjoy!

Python, 957 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
from tkinter import *
from random import randint, choice
from time import clock, sleep

# TODO: further tweaks
# 1. Add goals for the boids to move toward (DONE - BoidGroup.target)
# 2. Add wind or current that "blows" the boids around
# 3. Have boids tend towards a place; travel through waypoints
# 4. Limit (or unlimit) a boid's speed (DONE - BoidAgent.max_speed)
# 5. Set bounds for boids (DONE - BoidGUI.force_wall & .bounce_wall)
# 6. Allow boids to "perch" on the ground at random.

# TODO: anti-flocking behaviour
# 1. Get the boid group to scatter from each other; add more rules
# 2. Send the boids away from certain areas; danger or obstacles
# 3. Introduce predators that boids will always run from

# TODO: some other details
# 1. Boids need to "see" each other
# 2. Unseen boids should be ignored
# 3. Refer to the original algorithm
# 4. http://www.red3d.com/cwr/boids/
# 5. The timing engine needs redesign (DONE - based on pt.QT.run)
# 6. Change updating system to that used by QuizMe

################################################################################

# Here are various program settings.

USE_WINDOW = False  # Display program in window.
FULLSCREEN = True   # Go fullscreen when executed.

SCR_SAVER = False   # Turn screensaver mode on or off.
COME_BACK = -1      # The program can automatically "restart."
                    # if < 0: Exit program immediately
                    # if = 0: Disable exiting program
                    # if > 0: Come back after X seconds

TITLE = 'BOIDs'     # Title to show in windowed mode.
WIDTH = 800         # Width for window to display in.
HEIGHT = 600        # Height to display in window mode.

BACKGROUND = '#000' # Background color for the screen.
BOIDS = 10          # Number of boids to show in a group.

# BoidGUI and BoidAgent have settings too.

################################################################################

def main():
    # Create the opening window for the program.
    NoDefaultRoot()
    root = Tk()
    assert not (USE_WINDOW and FULLSCREEN), \
           'Only Window or Fullscreen may be used.'
    # Define the closing event handler.
    if COME_BACK < 0:
        def close(event=None):
            root.destroy()
    else:
        def close(event=None):
            if COME_BACK:
                root.withdraw()
                sleep(COME_BACK)
                for child in root.children.values():
                    if isinstance(child, BoidGUI):
                        child.last_time += COME_BACK
                root.deiconify()
    # Create window based on settings.
    if USE_WINDOW:
        root.resizable(False, False)
        root.title(TITLE)
        width = WIDTH
        height = HEIGHT
        position = ''
    elif FULLSCREEN:
        root.overrideredirect(True)
        if not SCR_SAVER:
            root.bind_all('<Escape>', close)
        width = root.winfo_screenwidth()
        height = root.winfo_screenheight()
        position = '+0+0'
    else:
        raise ValueError('Cannot determine window type to use.')
    # Configure the root window as needed.
    root.protocol('WM_DELETE_WINDOW', close)
    if SCR_SAVER:
        assert COME_BACK, 'Screen may not be locked as screensaver.'
        root.bind_all('<Motion>', close)
        root.bind_all('<Key>', close)
    root.geometry('{0}x{1}{2}'.format(width, height, position))
    # Create the application object that handles the GUI.
    app = BoidGUI(root, width, height, BACKGROUND, BOIDS)
    app.grid()
    root.mainloop()

################################################################################

# This function parses color strings.
def parse_color(string):
    assert len(string) == 7 and string[0] == '#', 'Not Color String!'
    number = []
    for index in range(1, len(string) - 1, 2):
        number.append(int(string[index:index+2], 16))
    return tuple(number)

# This function interpolates between two colors.
def interpolate(lower, upper, bias):
    A = 1 - bias
    R = round(lower[0] * A + upper[0] * bias)
    G = round(lower[1] * A + upper[1] * bias)
    B = round(lower[2] * A + upper[2] * bias)
    return R, G, B

################################################################################

class BoidGUI(Canvas):

    # Drawing Options
    BAL_NOT_VEC = True      # Draw balls (True) or vectors (False).
    RANDOM_BACK = False     # Replace background with flashing colors?
    RANDOM_BALL = False     # Replace balls with flashing colors?
    DRAW_TARGET = True      # Show line from groups to their targets?
    # Wall Settings
    WALL_BOUNCE = False     # Bouncy wall if true; force wall if false.
    WALL_MARGIN = 50        # Pixels from edge of screen for boundary.
    WALL_FORCE = 100        # Force applied to balls outside boundary.
    # Random Parameters
    MAX_FPS = 100           # Maximum frame per second for display.
    GROUPS = 2              # Number of groups to have displayed on the GUI.
    # Target Settings
    TARGET_FORCE = 500      # Force exerted by the targets on the boid groups.
    TRIG_DIST = 100         # Distance to target where target gets changed.
    MINI_DIST = 200         # Target must be this far away when recreated.
    # Boid Settings
    MAX_SPEED = 400         # Maximum speed for boids (pixels per second).
    MAX_SIZE = 15           # Largest radius a boid is allowed to have.
    MIN_SIZE = 10           # Smallest radius a boid may be built with.
    # Color Variables
    PALETTE_MODE = True     # Palette mode if true; random mode if false.
    COLORS = '#FF0000', '#FF7F00', '#FFFF00', '#00FF00', '#0000FF', '#FF00FF'
    PALETTE = []
    for x in range(16):
        for y in range(16):
            for z in range(16):
                color = '#{:X}{:X}{:X}'.format(x, y, z)
                PALETTE.append(color)
    # Check the settings up above for errors.
    assert MINI_DIST > TRIG_DIST, 'Targets must be set beyond trigger point.'
    assert MAX_SIZE > MIN_SIZE, 'A minimum may not be larger than maximum.'
    assert len(COLORS) > GROUPS, 'There must be more colors than groups.'

    def __init__(self, master, width, height, background, boids):
        # Initialize the Canvas object.
        cursor = 'none' if SCR_SAVER else ''
        super().__init__(master, width=width, height=height, cursor=cursor,
                         background=background, highlightthickness=0)
        self.width = width
        self.height = height
        self.background = background
        # Create colors for the balls.
        self.create_ball_palette(boids)
        # Build the boid control system.
        self.build_boids(boids)
        # Build loop for frame updating.
        self.last_time = clock()
        self.time_diff = 1 / self.MAX_FPS
        self.after(1000 // self.MAX_FPS, self.update_screen)

    def create_ball_palette(self, size):
        # The last color is not used.
        size += 1
        # Turn the colors into (R, G, B) tuples.
        colors = list(map(parse_color, self.COLORS))
        self.BALL_PALETTE = []
        for index in range(len(colors)):
            # Extract color bounds.
            lower = colors[index]
            upper = colors[(index + 1) % len(colors)]
            palette = []
            # Interpolate colors between the bounds.
            for bias in range(size):
                R, G, B = interpolate(lower, upper, bias / size)
                palette.append('#{0:02X}{1:02X}{2:02X}'.format(R, G, B))
            # Add the new palette to the choice list.
            self.BALL_PALETTE.append(palette)

    def build_boids(self, boids):
        # Build various boid simulation groups.
        self.groups = []
        for group in range(self.GROUPS):
            group = BoidGroup()
            group.palette = choice(self.BALL_PALETTE)
            self.BALL_PALETTE.remove(group.palette)
            # Create a new boid for current group.
            for boid, color in zip(range(boids), group.palette):
                # Place the boid somewhere on screen.
                x = randint(0, self.width)
                y = randint(0, self.height)
                position = Vector2(x, y)
                # Give it a random velocity (within 400).
                velocity = Polar2(randint(1, self.MAX_SPEED), randint(1, 360))
                # Create a random size for the ball.
                size = randint(self.MIN_SIZE, self.MAX_SIZE)
                assert size != 2, 'This is an oddly shaped ball.'
                # Create a boid (with a maximum speed of 400).
                boid = BoidAgent(position, velocity, size, self.MAX_SPEED)
                # Add a color attribute from COLORS list.
                if self.PALETTE_MODE:
                    boid.color = color
                else:
                    boid.color = choice(self.COLORS)
                group.add_boid(boid)
            # Add some mutators to this group.
            if self.WALL_BOUNCE:
                group.add_control(self.bounce_wall)
            else:
                group.add_control(self.force_wall)
            group.add_control(self.motivate)
            # Add a random target attribute to the group.
            x = randint(self.WALL_MARGIN, self.width - self.WALL_MARGIN)
            y = randint(self.WALL_MARGIN, self.height - self.WALL_MARGIN)
            group.target = Vector2(x, y)
            self.groups.append(group)

    def motivate(self, group, boid, seconds):
        # What direction should this boid move in?
        vector = (group.target - boid.position).unit()
        # Adjust velocity according to force and scale.
        boid.velocity += vector * self.TARGET_FORCE * seconds

    def check_target(self):
        for group in self.groups:
            # Is the center of the group within (100) pixels of target?
            if (group.center - group.target).magnitude <= self.TRIG_DIST:
                # Adjust target to be over (200) pixels away.
                while (group.center - group.target).magnitude <= self.MINI_DIST:
                    minimum = self.WALL_MARGIN
                    width = self.width - minimum
                    height = self.height - minimum
                    x = randint(minimum, width)
                    y = randint(minimum, height)
                    group.target = Vector2(x, y)
                # Change the ball colors if they are not random.
                if not self.RANDOM_BALL:
                    if self.PALETTE_MODE:
                        palette = choice(self.BALL_PALETTE)
                        self.BALL_PALETTE.remove(palette)
                        self.BALL_PALETTE.append(group.palette)
                        # Assign colors from new palette.
                        for boid, color in zip(group.boids, palette):
                            boid.color = color
                        group.palette = palette
                    else:
                        # Assign a random color from palette.
                        for boid in group.boids:
                            boid.color = choice(self.COLORS)
                    

    def force_wall(self, group, boid, seconds):
        # Left and Right walls.
        if boid.position.x < self.WALL_MARGIN:
            boid.velocity.x += self.WALL_FORCE * seconds
        elif boid.position.x > self.width - self.WALL_FORCE:
            boid.velocity.x -= self.WALL_FORCE * seconds
        # Upper and Lower walls.
        if boid.position.y < self.WALL_MARGIN:
            boid.velocity.y += self.WALL_FORCE * seconds
        elif boid.position.y > self.height - self.WALL_FORCE:
            boid.velocity.y -= self.WALL_FORCE * seconds

    def bounce_wall(self, group, boid, seconds):
        # Left and Right walls.
        if boid.position.x < self.WALL_MARGIN:
            if boid.velocity.x < 0:
                boid.velocity.x *= -1
        elif boid.position.x > self.width - self.WALL_MARGIN:
            if boid.velocity.x > 0:
                boid.velocity.x *= -1
        # Upper and Lower walls.
        if boid.position.y < self.WALL_MARGIN:
            if boid.velocity.y < 0:
                boid.velocity.y *= -1
        elif boid.position.y > self.height - self.WALL_MARGIN:
            if boid.velocity.y > 0:
                boid.velocity.y *= -1

    def update_screen(self):
        # Clear the screen.
        self.delete(ALL)
        for group in self.groups:
            # Draw the group's target if enabled.
            if self.DRAW_TARGET:
                center = group.center
                target = group.target
                self.create_line(center.x, center.y, target.x, target.y,
                                 fill=choice(self.PALETTE), width=3)
            # Draw all boids in the current group.
            for boid in group.boids:
                # Select correct fill color for drawing.
                fill = choice(self.PALETTE) if self.RANDOM_BALL else boid.color
                if self.BAL_NOT_VEC:
                    # Draw a ball (oval).
                    x1 = boid.position.x - boid.radius
                    y1 = boid.position.y - boid.radius
                    x2 = boid.position.x + boid.radius
                    y2 = boid.position.y + boid.radius
                    self.create_oval((x1, y1, x2, y2), fill=fill)
                else:
                    # Draw a direction pointer.
                    start = boid.position
                    end = boid.velocity.unit() * (boid.radius * 3) + start
                    self.create_line(start.x, start.y, end.x, end.y,
                                     fill=fill, width=3)
        # Randomize the background color if enabled.
        if self.RANDOM_BACK:
            self['background'] = choice(self.PALETTE)
        # Update all group targets as needed.
        self.check_target()
        # Run through the updating routines on the groups.
        time = clock()
        delta = time - self.last_time
        for group in self.groups:
            group.run_controls(delta)
            group.update_velocity()
            group.update_position(delta)
        self.last_time = time
        # Schedule for the next run of this method.
        plus = time + self.time_diff
        over = plus % self.time_diff
        diff = plus - time - over
        self.after(round(diff * 1000), self.update_screen)

import _tkinter # Properly set the GUI's update rate.
_tkinter.setbusywaitinterval(1000 // BoidGUI.MAX_FPS)

################################################################################

# This is where groups and world objects should live.
class BoidWorld:
    pass

################################################################################

class BoidGroup:

    # Simple collection for managing boid agents.

    def __init__(self):
        self.__boids = []
        self.__flag = False
        self.__controls = []
        self.__good_center = False
        self.__prop_center = Vector2(0, 0)
        self.__good_vector = False
        self.__prop_vector = Vector2(0, 0)

    def add_boid(self, boid):
        self.__boids.append(boid)

    def update_velocity(self):
        assert not self.__flag, 'Position must be updated first.'
        self.__flag = True
        for boid in self.__boids:
            boid.update_velocity(self, self.__boids)
        self.__good_vector = False

    def update_position(self, seconds):
        assert self.__flag, 'Velocity must be updated first.'
        self.__flag = False
        for boid in self.__boids:
            boid.update_position(seconds)
        self.__good_center = False

    def add_control(self, control):
        self.__controls.append(control)

    def run_controls(self, seconds):
        for control in self.__controls:
            for boid in self.__boids:
                control(self, boid, seconds)

    @property
    def boids(self):
        for boid in self.__boids:
            yield boid

    @property
    def center(self):
        if self.__good_center == False:
            self.__prop_center = Vector2(0, 0)
            for boid in self.__boids:
                self.__prop_center += boid.position
            self.__prop_center /= len(self.__boids)
            self.__good_center = True
        return self.__prop_center

    @property
    def vector(self):
        if self.__good_vector == False:
            self.__prop_vector = Vector2(0, 0)
            for boid in self.__boids:
                self.__prop_vector += boid.velocity
            self.__prop_vector /= len(self.__boids)
            self.__good_vector = True
        return self.__prop_vector

################################################################################

class BoidAgent:

    # Implements all three boid rules.

    RULE_1_SCALE = 100  # Scale the clumping factor.
    RULE_2_SCALE = 3    # Scale the avoiding factor.
    RULE_2_SPACE = 1    # Avoid when inside of space.
    RULE_3_SCALE = 100  # Scale the schooling factor.

    def __init__(self, position, velocity, radius, max_speed):
        self.position = position
        self.velocity = velocity
        self.__update = Vector2(0, 0)
        self.radius = radius
        self.max_speed = max_speed

    def update_velocity(self, group, boids):
        # Filter self out of boids.
        others = [boid for boid in boids if boid is not self]
        # Run through the boid rules.
        vector_1 = self.__rule_1(others)
        # vector_1 = (group.center - self.position) / 100
        vector_2 = self.__rule_2(others)
        vector_3 = self.__rule_3(others)
        # vector_3 = (group.vector - self.velocity) / 100
        # Save the results.
        self.__update = vector_1 + vector_2 + vector_3

    def update_position(self, seconds):
        # Update to new velocity.
        self.velocity += self.__update
        # Limit the velocity as needed.
        if self.velocity.magnitude > self.max_speed:
            self.velocity /= self.velocity.magnitude / self.max_speed
        # Update our position variable.
        self.position += self.velocity * seconds

    def __rule_1(self, boids):
        # Simulate the clumping factor.
        vector = Vector2(0, 0)
        for boid in boids:
            vector += boid.position
        vector /= len(boids)
        return (vector - self.position) / self.RULE_1_SCALE

    def __rule_2(self, boids):
        # Simulate the avoiding factor.
        vector = Vector2(0, 0)
        for boid in boids:
            delta = (boid.position - self.position).magnitude
            space = (boid.radius + self.radius) * (self.RULE_2_SPACE + 1)
            if delta < space:
                vector += (self.position - boid.position)
        return vector / self.RULE_2_SCALE

    def __rule_3(self, boids):
        # Simulate the schooling factor.
        vector = Vector2(0, 0)
        weight = 0
        for boid in boids:
            r2 = boid.radius ** 2
            vector += boid.velocity * r2
            weight += r2
        vector /= len(boids) * weight
        return (vector - self.velocity) / self.RULE_3_SCALE

################################################################################

from math import *

################################################################################

def Polar2(magnitude, degrees):
    x = magnitude * sin(radians(degrees))
    y = magnitude * cos(radians(degrees))
    return Vector2(x, y)

################################################################################

class Vector2:

    # See all the nice vector operations above?
    # The following class implements those instructions.

    __slots__ = 'x', 'y'

    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __repr__(self):
        return 'Vector2({!r}, {!r})'.format(self.x, self.y)

    def polar_repr(self):
        x, y = self.x, self.y
        magnitude = hypot(x, y)
        angle = degrees(atan2(x, y)) % 360
        return 'Polar2({!r}, {!r})'.format(magnitude, angle)

    # Rich Comparison Methods

    def __lt__(self, obj):
        if isinstance(obj, Vector2):
            x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y
            return x1 * x1 + y1 * y1 < x2 * x2 + y2 * y2
        return hypot(self.x, self.y) < obj

    def __le__(self, obj):
        if isinstance(obj, Vector2):
            x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y
            return x1 * x1 + y1 * y1 <= x2 * x2 + y2 * y2
        return hypot(self.x, self.y) <= obj

    def __eq__(self, obj):
        if isinstance(obj, Vector2):
            return self.x == obj.x and self.y == obj.y
        return hypot(self.x, self.y) == obj

    def __ne__(self, obj):
        if isinstance(obj, Vector2):
            return self.x != obj.x or self.y != obj.y
        return hypot(self.x, self.y) != obj

    def __gt__(self, obj):
        if isinstance(obj, Vector2):
            x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y
            return x1 * x1 + y1 * y1 > x2 * x2 + y2 * y2
        return hypot(self.x, self.y) > obj

    def __ge__(self, obj):
        if isinstance(obj, Vector2):
            x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y
            return x1 * x1 + y1 * y1 >= x2 * x2 + y2 * y2
        return hypot(self.x, self.y) >= obj

    # Boolean Operation

    def __bool__(self):
        return self.x != 0 or self.y != 0

    # Container Methods

    def __len__(self):
        return 2

    def __getitem__(self, index):
        return (self.x, self.y)[index]

    def __setitem__(self, index, value):
        temp = [self.x, self.y]
        temp[index] = value
        self.x, self.y = temp

    def __iter__(self):
        yield self.x
        yield self.y

    def __reversed__(self):
        yield self.y
        yield self.x

    def __contains__(self, obj):
        return obj in (self.x, self.y)

    # Binary Arithmetic Operations

    def __add__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x + obj.x, self.y + obj.y)
        return Vector2(self.x + obj, self.y + obj)

    def __sub__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x - obj.x, self.y - obj.y)
        return Vector2(self.x - obj, self.y - obj)

    def __mul__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x * obj.x, self.y * obj.y)
        return Vector2(self.x * obj, self.y * obj)

    def __truediv__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x / obj.x, self.y / obj.y)
        return Vector2(self.x / obj, self.y / obj)

    def __floordiv__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x // obj.x, self.y // obj.y)
        return Vector2(self.x // obj, self.y // obj)

    def __mod__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x % obj.x, self.y % obj.y)
        return Vector2(self.x % obj, self.y % obj)

    def __divmod__(self, obj):
        if isinstance(obj, Vector2):
            return (Vector2(self.x // obj.x, self.y // obj.y),
                    Vector2(self.x % obj.x, self.y % obj.y))
        return (Vector2(self.x // obj, self.y // obj),
                Vector2(self.x % obj, self.y % obj))

    def __pow__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x ** obj.x, self.y ** obj.y)
        return Vector2(self.x ** obj, self.y ** obj)

    def __lshift__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x << obj.x, self.y << obj.y)
        return Vector2(self.x << obj, self.y << obj)

    def __rshift__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x >> obj.x, self.y >> obj.y)
        return Vector2(self.x >> obj, self.y >> obj)

    def __and__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x & obj.x, self.y & obj.y)
        return Vector2(self.x & obj, self.y & obj)

    def __xor__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x ^ obj.x, self.y ^ obj.y)
        return Vector2(self.x ^ obj, self.y ^ obj)

    def __or__(self, obj):
        if isinstance(obj, Vector2):
            return Vector2(self.x | obj.x, self.y | obj.y)
        return Vector2(self.x | obj, self.y | obj)

    # Binary Arithmetic Operations (with reflected operands)

    def __radd__(self, obj):
        return Vector2(obj + self.x, obj + self.y)

    def __rsub__(self, obj):
        return Vector2(obj - self.x, obj - self.y)

    def __rmul__(self, obj):
        return Vector2(obj * self.x, obj * self.y)

    def __rtruediv__(self, obj):
        return Vector2(obj / self.x, obj / self.y)

    def __rfloordiv__(self, obj):
        return Vector2(obj // self.x, obj // self.y)

    def __rmod__(self, obj):
        return Vector2(obj % self.x, obj % self.y)

    def __rdivmod__(self, obj):
        return (Vector2(obj // self.x, obj // self.y),
                Vector2(obj % self.x, obj % self.y))

    def __rpow__(self, obj):
        return Vector2(obj ** self.x, obj ** self.y)

    def __rlshift__(self, obj):
        return Vector2(obj << self.x, obj << self.y)

    def __rrshift__(self, obj):
        return Vector2(obj >> self.x, obj >> self.y)

    def __rand__(self, obj):
        return Vector2(obj & self.x, obj & self.y)

    def __rxor__(self, obj):
        return Vector2(obj ^ self.x, obj ^ self.y)

    def __ror__(self, obj):
        return Vector2(obj | self.x, obj | self.y)

    # Augmented Arithmetic Assignments

    def __iadd__(self, obj):
        if isinstance(obj, Vector2):
            self.x += obj.x
            self.y += obj.y
        else:
            self.x += obj
            self.y += obj
        return self

    def __isub__(self, obj):
        if isinstance(obj, Vector2):
            self.x -= obj.x
            self.y -= obj.y
        else:
            self.x -= obj
            self.y -= obj
        return self

    def __imul__(self, obj):
        if isinstance(obj, Vector2):
            self.x *= obj.x
            self.y *= obj.y
        else:
            self.x *= obj
            self.y *= obj
        return self

    def __itruediv__(self, obj):
        if isinstance(obj, Vector2):
            self.x /= obj.x
            self.y /= obj.y
        else:
            self.x /= obj
            self.y /= obj
        return self

    def __ifloordiv__(self, obj):
        if isinstance(obj, Vector2):
            self.x //= obj.x
            self.y //= obj.y
        else:
            self.x //= obj
            self.y //= obj
        return self

    def __imod__(self, obj):
        if isinstance(obj, Vector2):
            self.x %= obj.x
            self.y %= obj.y
        else:
            self.x %= obj
            self.y %= obj
        return self

    def __ipow__(self, obj):        
        if isinstance(obj, Vector2):
            self.x **= obj.x
            self.y **= obj.y
        else:
            self.x **= obj
            self.y **= obj
        return self

    def __ilshift__(self, obj):
        if isinstance(obj, Vector2):
            self.x <<= obj.x
            self.y <<= obj.y
        else:
            self.x <<= obj
            self.y <<= obj
        return self

    def __irshift__(self, obj):
        if isinstance(obj, Vector2):
            self.x >>= obj.x
            self.y >>= obj.y
        else:
            self.x >>= obj
            self.y >>= obj
        return self

    def __iand__(self, obj):
        if isinstance(obj, Vector2):
            self.x &= obj.x
            self.y &= obj.y
        else:
            self.x &= obj
            self.y &= obj
        return self

    def __ixor__(self, obj):
        if isinstance(obj, Vector2):
            self.x ^= obj.x
            self.y ^= obj.y
        else:
            self.x ^= obj
            self.y ^= obj
        return self

    def __ior__(self, obj):
        if isinstance(obj, Vector2):
            self.x |= obj.x
            self.y |= obj.y
        else:
            self.x |= obj
            self.y |= obj
        return self

    # Unary Arithmetic Operations

    def __pos__(self):
        return Vector2(+self.x, +self.y)

    def __neg__(self):
        return Vector2(-self.x, -self.y)

    def __invert__(self):
        return Vector2(~self.x, ~self.y)

    def __abs__(self):
        return Vector2(abs(self.x), abs(self.y))

    # Virtual "magnitude" Attribute
    
    def __fg_ma(self):
        return hypot(self.x, self.y)

    def __fs_ma(self, value):
        x, y = self.x, self.y
        temp = value / hypot(x, y)
        self.x, self.y = x * temp, y * temp

    magnitude = property(__fg_ma, __fs_ma, doc='Virtual "magnitude" Attribute')

    # Virtual "direction" Attribute
    
    def __fg_di(self):
        return atan2(self.y, self.x)

    def __fs_di(self, value):
        temp = hypot(self.x, self.y)
        self.x, self.y = cos(value) * temp, sin(value) * temp

    direction = property(__fg_di, __fs_di, doc='Virtual "direction" Attribute')

    # Virtual "degrees" Attribute
    
    def __fg_de(self):
        return degrees(atan2(self.x, self.y)) % 360

    def __fs_de(self, value):
        temp = hypot(self.x, self.y)
        self.x, self.y = sin(radians(value)) * temp, cos(radians(value)) * temp

    degrees = property(__fg_de, __fs_de, doc='Virtual "degrees" Attribute')

    # Virtual "xy" Attribute

    def __fg_xy(self):
        return self.x, self.y

    def __fs_xy(self, value):
        self.x, self.y = value

    xy = property(__fg_xy, __fs_xy, doc='Virtual "xy" Attribute')

    # Virtual "yx" Attribute

    def __fg_yx(self):
        return self.y, self.x

    def __fs_yx(self, value):
        self.y, self.x = value

    yx = property(__fg_yx, __fs_yx, doc='Virtual "yx" Attribute')

    # Unit Vector Operations

    def unit_vector(self):
        x, y = self.x, self.y
        temp = hypot(x, y)
        return Vector2(x / temp, y / temp)

    def normalize(self):
        x, y = self.x, self.y
        temp = hypot(x, y)
        self.x, self.y = x / temp, y / temp
        return self

    # Vector Multiplication Operations

    def dot_product(self, vec):
        return self.x * vec.x + self.y * vec.y

    def cross_product(self, vec):
        return self.x * vec.y - self.y * vec.x

    # Geometric And Physical Reflections

    def reflect(self, vec):
        x1, y1, x2, y2 = self.x, self.y, vec.x, vec.y
        temp = 2 * (x1 * x2 + y1 * y2) / (x2 * x2 + y2 * y2)
        return Vector2(x2 * temp - x1, y2 * temp - y1)

    def bounce(self, vec):
        x1, y1, x2, y2 = self.x, self.y, +vec.y, -vec.x
        temp = 2 * (x1 * x2 + y1 * y2) / (x2 * x2 + y2 * y2)
        return Vector2(x2 * temp - x1, y2 * temp - y1)

    # Standard Vector Operations

    def project(self, vec):
        x, y = vec.x, vec.y
        temp = (self.x * x + self.y * y) / (x * x + y * y)
        return Vector2(x * temp, y * temp)

    def rotate(self, vec):
        x1, y1, x2, y2 = self.x, self.y, vec.x, vec.y
        return Vector2(x1 * x2 + y1 * y2, y1 * x2 - x1 * y2)

    def interpolate(self, vec, bias):
        a = 1 - bias
        return Vector2(self.x * a + vec.x * bias, self.y * a + vec.y * bias)

    # Other Useful Methods

    def near(self, vec, dist):
        x, y = self.x, self.y
        return x * x + y * y <= dist * dist

    def perpendicular(self):
        return Vector2(+self.y, -self.x)

    def subset(self, vec1, vec2):
        x1, x2 = vec1.x, vec2.x
        if x1 <= x2:
            if x1 <= self.x <= x2:
                y1, y2 = vec1.y, vec2.y
                if y1 <= y2:
                    return y1 <= self.y <= y2
                return y2 <= self.y <= y1
        else:
            if x2 <= self.x <= x1:
                y1, y2 = vec1.y, vec2.y
                if y1 <= y2:
                    return y1 <= self.y <= y2
                return y2 <= self.y <= y1
        return False

    # Synonymous Definitions

    copy = __pos__

    inverse = __neg__

    unit = unit_vector

    dot = dot_product

    cross = cross_product

    lerp = interpolate

    perp = perpendicular

################################################################################

# If this code is run directly,
# run the program's entry point.
if __name__ == '__main__':
    main()

2 comments

stewart midwinter 14 years, 5 months ago  # | flag

How aboutg a clear introductory statement about the purpose of the recipe. Is this an entire app, a snippet, a game, a productivity tool?

Stephen Chappell (author) 14 years, 5 months ago  # | flag

It is a demonstration of the BOID algorithm developed by Craig Reynolds. For more information, you can alway look at the previous version of this recipe written for Python 2.5 and later.

As for this recipe's purpose, I was thinking that it would be nice to have a screensaver running on the computer. The original recipe provided inspiration for something enjoyable to see on screen.