This is a revisiting of Recipe 502216. All the code is new in this implementation, and the concept has been advanced into something akin to a screensaver. Development has ended on this version until work can be done on a third version that takes the to-do lists into account in a more structured way. Feel free to modify this code as you wish (as someone apparently did in the original recipe). If nothing else, it can serve as a short diversion from the predictability of life. Enjoy!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 | from tkinter import *
from random import randint, choice
from time import clock, sleep
# TODO: further tweaks
# 1. Add goals for the boids to move toward (DONE - BoidGroup.target)
# 2. Add wind or current that "blows" the boids around
# 3. Have boids tend towards a place; travel through waypoints
# 4. Limit (or unlimit) a boid's speed (DONE - BoidAgent.max_speed)
# 5. Set bounds for boids (DONE - BoidGUI.force_wall & .bounce_wall)
# 6. Allow boids to "perch" on the ground at random.
# TODO: anti-flocking behaviour
# 1. Get the boid group to scatter from each other; add more rules
# 2. Send the boids away from certain areas; danger or obstacles
# 3. Introduce predators that boids will always run from
# TODO: some other details
# 1. Boids need to "see" each other
# 2. Unseen boids should be ignored
# 3. Refer to the original algorithm
# 4. http://www.red3d.com/cwr/boids/
# 5. The timing engine needs redesign (DONE - based on pt.QT.run)
# 6. Change updating system to that used by QuizMe
################################################################################
# Here are various program settings.
USE_WINDOW = False # Display program in window.
FULLSCREEN = True # Go fullscreen when executed.
SCR_SAVER = False # Turn screensaver mode on or off.
COME_BACK = -1 # The program can automatically "restart."
# if < 0: Exit program immediately
# if = 0: Disable exiting program
# if > 0: Come back after X seconds
TITLE = 'BOIDs' # Title to show in windowed mode.
WIDTH = 800 # Width for window to display in.
HEIGHT = 600 # Height to display in window mode.
BACKGROUND = '#000' # Background color for the screen.
BOIDS = 10 # Number of boids to show in a group.
# BoidGUI and BoidAgent have settings too.
################################################################################
def main():
# Create the opening window for the program.
NoDefaultRoot()
root = Tk()
assert not (USE_WINDOW and FULLSCREEN), \
'Only Window or Fullscreen may be used.'
# Define the closing event handler.
if COME_BACK < 0:
def close(event=None):
root.destroy()
else:
def close(event=None):
if COME_BACK:
root.withdraw()
sleep(COME_BACK)
for child in root.children.values():
if isinstance(child, BoidGUI):
child.last_time += COME_BACK
root.deiconify()
# Create window based on settings.
if USE_WINDOW:
root.resizable(False, False)
root.title(TITLE)
width = WIDTH
height = HEIGHT
position = ''
elif FULLSCREEN:
root.overrideredirect(True)
if not SCR_SAVER:
root.bind_all('<Escape>', close)
width = root.winfo_screenwidth()
height = root.winfo_screenheight()
position = '+0+0'
else:
raise ValueError('Cannot determine window type to use.')
# Configure the root window as needed.
root.protocol('WM_DELETE_WINDOW', close)
if SCR_SAVER:
assert COME_BACK, 'Screen may not be locked as screensaver.'
root.bind_all('<Motion>', close)
root.bind_all('<Key>', close)
root.geometry('{0}x{1}{2}'.format(width, height, position))
# Create the application object that handles the GUI.
app = BoidGUI(root, width, height, BACKGROUND, BOIDS)
app.grid()
root.mainloop()
################################################################################
# This function parses color strings.
def parse_color(string):
assert len(string) == 7 and string[0] == '#', 'Not Color String!'
number = []
for index in range(1, len(string) - 1, 2):
number.append(int(string[index:index+2], 16))
return tuple(number)
# This function interpolates between two colors.
def interpolate(lower, upper, bias):
A = 1 - bias
R = round(lower[0] * A + upper[0] * bias)
G = round(lower[1] * A + upper[1] * bias)
B = round(lower[2] * A + upper[2] * bias)
return R, G, B
################################################################################
class BoidGUI(Canvas):
# Drawing Options
BAL_NOT_VEC = True # Draw balls (True) or vectors (False).
RANDOM_BACK = False # Replace background with flashing colors?
RANDOM_BALL = False # Replace balls with flashing colors?
DRAW_TARGET = True # Show line from groups to their targets?
# Wall Settings
WALL_BOUNCE = False # Bouncy wall if true; force wall if false.
WALL_MARGIN = 50 # Pixels from edge of screen for boundary.
WALL_FORCE = 100 # Force applied to balls outside boundary.
# Random Parameters
MAX_FPS = 100 # Maximum frame per second for display.
GROUPS = 2 # Number of groups to have displayed on the GUI.
# Target Settings
TARGET_FORCE = 500 # Force exerted by the targets on the boid groups.
TRIG_DIST = 100 # Distance to target where target gets changed.
MINI_DIST = 200 # Target must be this far away when recreated.
# Boid Settings
MAX_SPEED = 400 # Maximum speed for boids (pixels per second).
MAX_SIZE = 15 # Largest radius a boid is allowed to have.
MIN_SIZE = 10 # Smallest radius a boid may be built with.
# Color Variables
PALETTE_MODE = True # Palette mode if true; random mode if false.
COLORS = '#FF0000', '#FF7F00', '#FFFF00', '#00FF00', '#0000FF', '#FF00FF'
PALETTE = []
for x in range(16):
for y in range(16):
for z in range(16):
color = '#{:X}{:X}{:X}'.format(x, y, z)
PALETTE.append(color)
# Check the settings up above for errors.
assert MINI_DIST > TRIG_DIST, 'Targets must be set beyond trigger point.'
assert MAX_SIZE > MIN_SIZE, 'A minimum may not be larger than maximum.'
assert len(COLORS) > GROUPS, 'There must be more colors than groups.'
def __init__(self, master, width, height, background, boids):
# Initialize the Canvas object.
cursor = 'none' if SCR_SAVER else ''
super().__init__(master, width=width, height=height, cursor=cursor,
background=background, highlightthickness=0)
self.width = width
self.height = height
self.background = background
# Create colors for the balls.
self.create_ball_palette(boids)
# Build the boid control system.
self.build_boids(boids)
# Build loop for frame updating.
self.last_time = clock()
self.time_diff = 1 / self.MAX_FPS
self.after(1000 // self.MAX_FPS, self.update_screen)
def create_ball_palette(self, size):
# The last color is not used.
size += 1
# Turn the colors into (R, G, B) tuples.
colors = list(map(parse_color, self.COLORS))
self.BALL_PALETTE = []
for index in range(len(colors)):
# Extract color bounds.
lower = colors[index]
upper = colors[(index + 1) % len(colors)]
palette = []
# Interpolate colors between the bounds.
for bias in range(size):
R, G, B = interpolate(lower, upper, bias / size)
palette.append('#{0:02X}{1:02X}{2:02X}'.format(R, G, B))
# Add the new palette to the choice list.
self.BALL_PALETTE.append(palette)
def build_boids(self, boids):
# Build various boid simulation groups.
self.groups = []
for group in range(self.GROUPS):
group = BoidGroup()
group.palette = choice(self.BALL_PALETTE)
self.BALL_PALETTE.remove(group.palette)
# Create a new boid for current group.
for boid, color in zip(range(boids), group.palette):
# Place the boid somewhere on screen.
x = randint(0, self.width)
y = randint(0, self.height)
position = Vector2(x, y)
# Give it a random velocity (within 400).
velocity = Polar2(randint(1, self.MAX_SPEED), randint(1, 360))
# Create a random size for the ball.
size = randint(self.MIN_SIZE, self.MAX_SIZE)
assert size != 2, 'This is an oddly shaped ball.'
# Create a boid (with a maximum speed of 400).
boid = BoidAgent(position, velocity, size, self.MAX_SPEED)
# Add a color attribute from COLORS list.
if self.PALETTE_MODE:
boid.color = color
else:
boid.color = choice(self.COLORS)
group.add_boid(boid)
# Add some mutators to this group.
if self.WALL_BOUNCE:
group.add_control(self.bounce_wall)
else:
group.add_control(self.force_wall)
group.add_control(self.motivate)
# Add a random target attribute to the group.
x = randint(self.WALL_MARGIN, self.width - self.WALL_MARGIN)
y = randint(self.WALL_MARGIN, self.height - self.WALL_MARGIN)
group.target = Vector2(x, y)
self.groups.append(group)
def motivate(self, group, boid, seconds):
# What direction should this boid move in?
vector = (group.target - boid.position).unit()
# Adjust velocity according to force and scale.
boid.velocity += vector * self.TARGET_FORCE * seconds
def check_target(self):
for group in self.groups:
# Is the center of the group within (100) pixels of target?
if (group.center - group.target).magnitude <= self.TRIG_DIST:
# Adjust target to be over (200) pixels away.
while (group.center - group.target).magnitude <= self.MINI_DIST:
minimum = self.WALL_MARGIN
width = self.width - minimum
height = self.height - minimum
x = randint(minimum, width)
y = randint(minimum, height)
group.target = Vector2(x, y)
# Change the ball colors if they are not random.
if not self.RANDOM_BALL:
if self.PALETTE_MODE:
palette = choice(self.BALL_PALETTE)
self.BALL_PALETTE.remove(palette)
self.BALL_PALETTE.append(group.palette)
# Assign colors from new palette.
for boid, color in zip(group.boids, palette):
boid.color = color
group.palette = palette
else:
# Assign a random color from palette.
for boid in group.boids:
boid.color = choice(self.COLORS)
def force_wall(self, group, boid, seconds):
# Left and Right walls.
if boid.position.x < self.WALL_MARGIN:
boid.velocity.x += self.WALL_FORCE * seconds
elif boid.position.x > self.width - self.WALL_FORCE:
boid.velocity.x -= self.WALL_FORCE * seconds
# Upper and Lower walls.
if boid.position.y < self.WALL_MARGIN:
boid.velocity.y += self.WALL_FORCE * seconds
elif boid.position.y > self.height - self.WALL_FORCE:
boid.velocity.y -= self.WALL_FORCE * seconds
def bounce_wall(self, group, boid, seconds):
# Left and Right walls.
if boid.position.x < self.WALL_MARGIN:
if boid.velocity.x < 0:
boid.velocity.x *= -1
elif boid.position.x > self.width - self.WALL_MARGIN:
if boid.velocity.x > 0:
boid.velocity.x *= -1
# Upper and Lower walls.
if boid.position.y < self.WALL_MARGIN:
if boid.velocity.y < 0:
boid.velocity.y *= -1
elif boid.position.y > self.height - self.WALL_MARGIN:
if boid.velocity.y > 0:
boid.velocity.y *= -1
def update_screen(self):
# Clear the screen.
self.delete(ALL)
for group in self.groups:
# Draw the group's target if enabled.
if self.DRAW_TARGET:
center = group.center
target = group.target
self.create_line(center.x, center.y, target.x, target.y,
fill=choice(self.PALETTE), width=3)
# Draw all boids in the current group.
for boid in group.boids:
# Select correct fill color for drawing.
fill = choice(self.PALETTE) if self.RANDOM_BALL else boid.color
if self.BAL_NOT_VEC:
# Draw a ball (oval).
x1 = boid.position.x - boid.radius
y1 = boid.position.y - boid.radius
x2 = boid.position.x + boid.radius
y2 = boid.position.y + boid.radius
self.create_oval((x1, y1, x2, y2), fill=fill)
else:
# Draw a direction pointer.
start = boid.position
end = boid.velocity.unit() * (boid.radius * 3) + start
self.create_line(start.x, start.y, end.x, end.y,
fill=fill, width=3)
# Randomize the background color if enabled.
if self.RANDOM_BACK:
self['background'] = choice(self.PALETTE)
# Update all group targets as needed.
self.check_target()
# Run through the updating routines on the groups.
time = clock()
delta = time - self.last_time
for group in self.groups:
group.run_controls(delta)
group.update_velocity()
group.update_position(delta)
self.last_time = time
# Schedule for the next run of this method.
plus = time + self.time_diff
over = plus % self.time_diff
diff = plus - time - over
self.after(round(diff * 1000), self.update_screen)
import _tkinter # Properly set the GUI's update rate.
_tkinter.setbusywaitinterval(1000 // BoidGUI.MAX_FPS)
################################################################################
# This is where groups and world objects should live.
class BoidWorld:
pass
################################################################################
class BoidGroup:
# Simple collection for managing boid agents.
def __init__(self):
self.__boids = []
self.__flag = False
self.__controls = []
self.__good_center = False
self.__prop_center = Vector2(0, 0)
self.__good_vector = False
self.__prop_vector = Vector2(0, 0)
def add_boid(self, boid):
self.__boids.append(boid)
def update_velocity(self):
assert not self.__flag, 'Position must be updated first.'
self.__flag = True
for boid in self.__boids:
boid.update_velocity(self, self.__boids)
self.__good_vector = False
def update_position(self, seconds):
assert self.__flag, 'Velocity must be updated first.'
self.__flag = False
for boid in self.__boids:
boid.update_position(seconds)
self.__good_center = False
def add_control(self, control):
self.__controls.append(control)
def run_controls(self, seconds):
for control in self.__controls:
for boid in self.__boids:
control(self, boid, seconds)
@property
def boids(self):
for boid in self.__boids:
yield boid
@property
def center(self):
if self.__good_center == False:
self.__prop_center = Vector2(0, 0)
for boid in self.__boids:
self.__prop_center += boid.position
self.__prop_center /= len(self.__boids)
self.__good_center = True
return self.__prop_center
@property
def vector(self):
if self.__good_vector == False:
self.__prop_vector = Vector2(0, 0)
for boid in self.__boids:
self.__prop_vector += boid.velocity
self.__prop_vector /= len(self.__boids)
self.__good_vector = True
return self.__prop_vector
################################################################################
class BoidAgent:
# Implements all three boid rules.
RULE_1_SCALE = 100 # Scale the clumping factor.
RULE_2_SCALE = 3 # Scale the avoiding factor.
RULE_2_SPACE = 1 # Avoid when inside of space.
RULE_3_SCALE = 100 # Scale the schooling factor.
def __init__(self, position, velocity, radius, max_speed):
self.position = position
self.velocity = velocity
self.__update = Vector2(0, 0)
self.radius = radius
self.max_speed = max_speed
def update_velocity(self, group, boids):
# Filter self out of boids.
others = [boid for boid in boids if boid is not self]
# Run through the boid rules.
vector_1 = self.__rule_1(others)
# vector_1 = (group.center - self.position) / 100
vector_2 = self.__rule_2(others)
vector_3 = self.__rule_3(others)
# vector_3 = (group.vector - self.velocity) / 100
# Save the results.
self.__update = vector_1 + vector_2 + vector_3
def update_position(self, seconds):
# Update to new velocity.
self.velocity += self.__update
# Limit the velocity as needed.
if self.velocity.magnitude > self.max_speed:
self.velocity /= self.velocity.magnitude / self.max_speed
# Update our position variable.
self.position += self.velocity * seconds
def __rule_1(self, boids):
# Simulate the clumping factor.
vector = Vector2(0, 0)
for boid in boids:
vector += boid.position
vector /= len(boids)
return (vector - self.position) / self.RULE_1_SCALE
def __rule_2(self, boids):
# Simulate the avoiding factor.
vector = Vector2(0, 0)
for boid in boids:
delta = (boid.position - self.position).magnitude
space = (boid.radius + self.radius) * (self.RULE_2_SPACE + 1)
if delta < space:
vector += (self.position - boid.position)
return vector / self.RULE_2_SCALE
def __rule_3(self, boids):
# Simulate the schooling factor.
vector = Vector2(0, 0)
weight = 0
for boid in boids:
r2 = boid.radius ** 2
vector += boid.velocity * r2
weight += r2
vector /= len(boids) * weight
return (vector - self.velocity) / self.RULE_3_SCALE
################################################################################
from math import *
################################################################################
def Polar2(magnitude, degrees):
x = magnitude * sin(radians(degrees))
y = magnitude * cos(radians(degrees))
return Vector2(x, y)
################################################################################
class Vector2:
# See all the nice vector operations above?
# The following class implements those instructions.
__slots__ = 'x', 'y'
def __init__(self, x, y):
self.x = x
self.y = y
def __repr__(self):
return 'Vector2({!r}, {!r})'.format(self.x, self.y)
def polar_repr(self):
x, y = self.x, self.y
magnitude = hypot(x, y)
angle = degrees(atan2(x, y)) % 360
return 'Polar2({!r}, {!r})'.format(magnitude, angle)
# Rich Comparison Methods
def __lt__(self, obj):
if isinstance(obj, Vector2):
x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y
return x1 * x1 + y1 * y1 < x2 * x2 + y2 * y2
return hypot(self.x, self.y) < obj
def __le__(self, obj):
if isinstance(obj, Vector2):
x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y
return x1 * x1 + y1 * y1 <= x2 * x2 + y2 * y2
return hypot(self.x, self.y) <= obj
def __eq__(self, obj):
if isinstance(obj, Vector2):
return self.x == obj.x and self.y == obj.y
return hypot(self.x, self.y) == obj
def __ne__(self, obj):
if isinstance(obj, Vector2):
return self.x != obj.x or self.y != obj.y
return hypot(self.x, self.y) != obj
def __gt__(self, obj):
if isinstance(obj, Vector2):
x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y
return x1 * x1 + y1 * y1 > x2 * x2 + y2 * y2
return hypot(self.x, self.y) > obj
def __ge__(self, obj):
if isinstance(obj, Vector2):
x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y
return x1 * x1 + y1 * y1 >= x2 * x2 + y2 * y2
return hypot(self.x, self.y) >= obj
# Boolean Operation
def __bool__(self):
return self.x != 0 or self.y != 0
# Container Methods
def __len__(self):
return 2
def __getitem__(self, index):
return (self.x, self.y)[index]
def __setitem__(self, index, value):
temp = [self.x, self.y]
temp[index] = value
self.x, self.y = temp
def __iter__(self):
yield self.x
yield self.y
def __reversed__(self):
yield self.y
yield self.x
def __contains__(self, obj):
return obj in (self.x, self.y)
# Binary Arithmetic Operations
def __add__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x + obj.x, self.y + obj.y)
return Vector2(self.x + obj, self.y + obj)
def __sub__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x - obj.x, self.y - obj.y)
return Vector2(self.x - obj, self.y - obj)
def __mul__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x * obj.x, self.y * obj.y)
return Vector2(self.x * obj, self.y * obj)
def __truediv__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x / obj.x, self.y / obj.y)
return Vector2(self.x / obj, self.y / obj)
def __floordiv__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x // obj.x, self.y // obj.y)
return Vector2(self.x // obj, self.y // obj)
def __mod__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x % obj.x, self.y % obj.y)
return Vector2(self.x % obj, self.y % obj)
def __divmod__(self, obj):
if isinstance(obj, Vector2):
return (Vector2(self.x // obj.x, self.y // obj.y),
Vector2(self.x % obj.x, self.y % obj.y))
return (Vector2(self.x // obj, self.y // obj),
Vector2(self.x % obj, self.y % obj))
def __pow__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x ** obj.x, self.y ** obj.y)
return Vector2(self.x ** obj, self.y ** obj)
def __lshift__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x << obj.x, self.y << obj.y)
return Vector2(self.x << obj, self.y << obj)
def __rshift__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x >> obj.x, self.y >> obj.y)
return Vector2(self.x >> obj, self.y >> obj)
def __and__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x & obj.x, self.y & obj.y)
return Vector2(self.x & obj, self.y & obj)
def __xor__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x ^ obj.x, self.y ^ obj.y)
return Vector2(self.x ^ obj, self.y ^ obj)
def __or__(self, obj):
if isinstance(obj, Vector2):
return Vector2(self.x | obj.x, self.y | obj.y)
return Vector2(self.x | obj, self.y | obj)
# Binary Arithmetic Operations (with reflected operands)
def __radd__(self, obj):
return Vector2(obj + self.x, obj + self.y)
def __rsub__(self, obj):
return Vector2(obj - self.x, obj - self.y)
def __rmul__(self, obj):
return Vector2(obj * self.x, obj * self.y)
def __rtruediv__(self, obj):
return Vector2(obj / self.x, obj / self.y)
def __rfloordiv__(self, obj):
return Vector2(obj // self.x, obj // self.y)
def __rmod__(self, obj):
return Vector2(obj % self.x, obj % self.y)
def __rdivmod__(self, obj):
return (Vector2(obj // self.x, obj // self.y),
Vector2(obj % self.x, obj % self.y))
def __rpow__(self, obj):
return Vector2(obj ** self.x, obj ** self.y)
def __rlshift__(self, obj):
return Vector2(obj << self.x, obj << self.y)
def __rrshift__(self, obj):
return Vector2(obj >> self.x, obj >> self.y)
def __rand__(self, obj):
return Vector2(obj & self.x, obj & self.y)
def __rxor__(self, obj):
return Vector2(obj ^ self.x, obj ^ self.y)
def __ror__(self, obj):
return Vector2(obj | self.x, obj | self.y)
# Augmented Arithmetic Assignments
def __iadd__(self, obj):
if isinstance(obj, Vector2):
self.x += obj.x
self.y += obj.y
else:
self.x += obj
self.y += obj
return self
def __isub__(self, obj):
if isinstance(obj, Vector2):
self.x -= obj.x
self.y -= obj.y
else:
self.x -= obj
self.y -= obj
return self
def __imul__(self, obj):
if isinstance(obj, Vector2):
self.x *= obj.x
self.y *= obj.y
else:
self.x *= obj
self.y *= obj
return self
def __itruediv__(self, obj):
if isinstance(obj, Vector2):
self.x /= obj.x
self.y /= obj.y
else:
self.x /= obj
self.y /= obj
return self
def __ifloordiv__(self, obj):
if isinstance(obj, Vector2):
self.x //= obj.x
self.y //= obj.y
else:
self.x //= obj
self.y //= obj
return self
def __imod__(self, obj):
if isinstance(obj, Vector2):
self.x %= obj.x
self.y %= obj.y
else:
self.x %= obj
self.y %= obj
return self
def __ipow__(self, obj):
if isinstance(obj, Vector2):
self.x **= obj.x
self.y **= obj.y
else:
self.x **= obj
self.y **= obj
return self
def __ilshift__(self, obj):
if isinstance(obj, Vector2):
self.x <<= obj.x
self.y <<= obj.y
else:
self.x <<= obj
self.y <<= obj
return self
def __irshift__(self, obj):
if isinstance(obj, Vector2):
self.x >>= obj.x
self.y >>= obj.y
else:
self.x >>= obj
self.y >>= obj
return self
def __iand__(self, obj):
if isinstance(obj, Vector2):
self.x &= obj.x
self.y &= obj.y
else:
self.x &= obj
self.y &= obj
return self
def __ixor__(self, obj):
if isinstance(obj, Vector2):
self.x ^= obj.x
self.y ^= obj.y
else:
self.x ^= obj
self.y ^= obj
return self
def __ior__(self, obj):
if isinstance(obj, Vector2):
self.x |= obj.x
self.y |= obj.y
else:
self.x |= obj
self.y |= obj
return self
# Unary Arithmetic Operations
def __pos__(self):
return Vector2(+self.x, +self.y)
def __neg__(self):
return Vector2(-self.x, -self.y)
def __invert__(self):
return Vector2(~self.x, ~self.y)
def __abs__(self):
return Vector2(abs(self.x), abs(self.y))
# Virtual "magnitude" Attribute
def __fg_ma(self):
return hypot(self.x, self.y)
def __fs_ma(self, value):
x, y = self.x, self.y
temp = value / hypot(x, y)
self.x, self.y = x * temp, y * temp
magnitude = property(__fg_ma, __fs_ma, doc='Virtual "magnitude" Attribute')
# Virtual "direction" Attribute
def __fg_di(self):
return atan2(self.y, self.x)
def __fs_di(self, value):
temp = hypot(self.x, self.y)
self.x, self.y = cos(value) * temp, sin(value) * temp
direction = property(__fg_di, __fs_di, doc='Virtual "direction" Attribute')
# Virtual "degrees" Attribute
def __fg_de(self):
return degrees(atan2(self.x, self.y)) % 360
def __fs_de(self, value):
temp = hypot(self.x, self.y)
self.x, self.y = sin(radians(value)) * temp, cos(radians(value)) * temp
degrees = property(__fg_de, __fs_de, doc='Virtual "degrees" Attribute')
# Virtual "xy" Attribute
def __fg_xy(self):
return self.x, self.y
def __fs_xy(self, value):
self.x, self.y = value
xy = property(__fg_xy, __fs_xy, doc='Virtual "xy" Attribute')
# Virtual "yx" Attribute
def __fg_yx(self):
return self.y, self.x
def __fs_yx(self, value):
self.y, self.x = value
yx = property(__fg_yx, __fs_yx, doc='Virtual "yx" Attribute')
# Unit Vector Operations
def unit_vector(self):
x, y = self.x, self.y
temp = hypot(x, y)
return Vector2(x / temp, y / temp)
def normalize(self):
x, y = self.x, self.y
temp = hypot(x, y)
self.x, self.y = x / temp, y / temp
return self
# Vector Multiplication Operations
def dot_product(self, vec):
return self.x * vec.x + self.y * vec.y
def cross_product(self, vec):
return self.x * vec.y - self.y * vec.x
# Geometric And Physical Reflections
def reflect(self, vec):
x1, y1, x2, y2 = self.x, self.y, vec.x, vec.y
temp = 2 * (x1 * x2 + y1 * y2) / (x2 * x2 + y2 * y2)
return Vector2(x2 * temp - x1, y2 * temp - y1)
def bounce(self, vec):
x1, y1, x2, y2 = self.x, self.y, +vec.y, -vec.x
temp = 2 * (x1 * x2 + y1 * y2) / (x2 * x2 + y2 * y2)
return Vector2(x2 * temp - x1, y2 * temp - y1)
# Standard Vector Operations
def project(self, vec):
x, y = vec.x, vec.y
temp = (self.x * x + self.y * y) / (x * x + y * y)
return Vector2(x * temp, y * temp)
def rotate(self, vec):
x1, y1, x2, y2 = self.x, self.y, vec.x, vec.y
return Vector2(x1 * x2 + y1 * y2, y1 * x2 - x1 * y2)
def interpolate(self, vec, bias):
a = 1 - bias
return Vector2(self.x * a + vec.x * bias, self.y * a + vec.y * bias)
# Other Useful Methods
def near(self, vec, dist):
x, y = self.x, self.y
return x * x + y * y <= dist * dist
def perpendicular(self):
return Vector2(+self.y, -self.x)
def subset(self, vec1, vec2):
x1, x2 = vec1.x, vec2.x
if x1 <= x2:
if x1 <= self.x <= x2:
y1, y2 = vec1.y, vec2.y
if y1 <= y2:
return y1 <= self.y <= y2
return y2 <= self.y <= y1
else:
if x2 <= self.x <= x1:
y1, y2 = vec1.y, vec2.y
if y1 <= y2:
return y1 <= self.y <= y2
return y2 <= self.y <= y1
return False
# Synonymous Definitions
copy = __pos__
inverse = __neg__
unit = unit_vector
dot = dot_product
cross = cross_product
lerp = interpolate
perp = perpendicular
################################################################################
# If this code is run directly,
# run the program's entry point.
if __name__ == '__main__':
main()
|
How aboutg a clear introductory statement about the purpose of the recipe. Is this an entire app, a snippet, a game, a productivity tool?
It is a demonstration of the BOID algorithm developed by Craig Reynolds. For more information, you can alway look at the previous version of this recipe written for Python 2.5 and later.
As for this recipe's purpose, I was thinking that it would be nice to have a screensaver running on the computer. The original recipe provided inspiration for something enjoyable to see on screen.