from math import * from functools import wraps ################################################################################ def autocast(method): # Optional method decorator @wraps(method) def wrapper(self, obj): try: return method(self, self.__class__(*obj)) except TypeError: return method(self, obj) return wrapper ################################################################################ def Polar2(magnitude, degrees): x = magnitude * sin(radians(degrees)) y = magnitude * cos(radians(degrees)) return Vector2(x, y) ################################################################################ class Vector2: __slots__ = 'x', 'y' def __init__(self, x, y): self.x = x self.y = y def __repr__(self): return 'Vector2({!r}, {!r})'.format(self.x, self.y) def polar_repr(self): x, y = self.x, self.y magnitude = hypot(x, y) angle = degrees(atan2(x, y)) % 360 return 'Polar2({!r}, {!r})'.format(magnitude, angle) # Rich Comparison Methods def __lt__(self, obj): if isinstance(obj, Vector2): x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y return x1 * x1 + y1 * y1 < x2 * x2 + y2 * y2 return hypot(self.x, self.y) < obj def __le__(self, obj): if isinstance(obj, Vector2): x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y return x1 * x1 + y1 * y1 <= x2 * x2 + y2 * y2 return hypot(self.x, self.y) <= obj def __eq__(self, obj): if isinstance(obj, Vector2): return self.x == obj.x and self.y == obj.y return hypot(self.x, self.y) == obj def __ne__(self, obj): if isinstance(obj, Vector2): return self.x != obj.x or self.y != obj.y return hypot(self.x, self.y) != obj def __gt__(self, obj): if isinstance(obj, Vector2): x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y return x1 * x1 + y1 * y1 > x2 * x2 + y2 * y2 return hypot(self.x, self.y) > obj def __ge__(self, obj): if isinstance(obj, Vector2): x1, y1, x2, y2 = self.x, self.y, obj.x, obj.y return x1 * x1 + y1 * y1 >= x2 * x2 + y2 * y2 return hypot(self.x, self.y) >= obj # Boolean Operation def __bool__(self): return self.x != 0 or self.y != 0 # Container Methods def __len__(self): return 2 def __getitem__(self, index): return (self.x, self.y)[index] def __setitem__(self, index, value): temp = [self.x, self.y] temp[index] = value self.x, self.y = temp def __iter__(self): yield self.x yield self.y def __reversed__(self): yield self.y yield self.x def __contains__(self, obj): return obj in (self.x, self.y) # Binary Arithmetic Operations def __add__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x + obj.x, self.y + obj.y) return Vector2(self.x + obj, self.y + obj) def __sub__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x - obj.x, self.y - obj.y) return Vector2(self.x - obj, self.y - obj) def __mul__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x * obj.x, self.y * obj.y) return Vector2(self.x * obj, self.y * obj) def __truediv__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x / obj.x, self.y / obj.y) return Vector2(self.x / obj, self.y / obj) def __floordiv__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x // obj.x, self.y // obj.y) return Vector2(self.x // obj, self.y // obj) def __mod__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x % obj.x, self.y % obj.y) return Vector2(self.x % obj, self.y % obj) def __divmod__(self, obj): if isinstance(obj, Vector2): return (Vector2(self.x // obj.x, self.y // obj.y), Vector2(self.x % obj.x, self.y % obj.y)) return (Vector2(self.x // obj, self.y // obj), Vector2(self.x % obj, self.y % obj)) def __pow__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x ** obj.x, self.y ** obj.y) return Vector2(self.x ** obj, self.y ** obj) def __lshift__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x << obj.x, self.y << obj.y) return Vector2(self.x << obj, self.y << obj) def __rshift__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x >> obj.x, self.y >> obj.y) return Vector2(self.x >> obj, self.y >> obj) def __and__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x & obj.x, self.y & obj.y) return Vector2(self.x & obj, self.y & obj) def __xor__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x ^ obj.x, self.y ^ obj.y) return Vector2(self.x ^ obj, self.y ^ obj) def __or__(self, obj): if isinstance(obj, Vector2): return Vector2(self.x | obj.x, self.y | obj.y) return Vector2(self.x | obj, self.y | obj) # Binary Arithmetic Operations (with reflected operands) def __radd__(self, obj): return Vector2(obj + self.x, obj + self.y) def __rsub__(self, obj): return Vector2(obj - self.x, obj - self.y) def __rmul__(self, obj): return Vector2(obj * self.x, obj * self.y) def __rtruediv__(self, obj): return Vector2(obj / self.x, obj / self.y) def __rfloordiv__(self, obj): return Vector2(obj // self.x, obj // self.y) def __rmod__(self, obj): return Vector2(obj % self.x, obj % self.y) def __rdivmod__(self, obj): return (Vector2(obj // self.x, obj // self.y), Vector2(obj % self.x, obj % self.y)) def __rpow__(self, obj): return Vector2(obj ** self.x, obj ** self.y) def __rlshift__(self, obj): return Vector2(obj << self.x, obj << self.y) def __rrshift__(self, obj): return Vector2(obj >> self.x, obj >> self.y) def __rand__(self, obj): return Vector2(obj & self.x, obj & self.y) def __rxor__(self, obj): return Vector2(obj ^ self.x, obj ^ self.y) def __ror__(self, obj): return Vector2(obj | self.x, obj | self.y) # Augmented Arithmetic Assignments def __iadd__(self, obj): if isinstance(obj, Vector2): self.x += obj.x self.y += obj.y else: self.x += obj self.y += obj return self def __isub__(self, obj): if isinstance(obj, Vector2): self.x -= obj.x self.y -= obj.y else: self.x -= obj self.y -= obj return self def __imul__(self, obj): if isinstance(obj, Vector2): self.x *= obj.x self.y *= obj.y else: self.x *= obj self.y *= obj return self def __itruediv__(self, obj): if isinstance(obj, Vector2): self.x /= obj.x self.y /= obj.y else: self.x /= obj self.y /= obj return self def __ifloordiv__(self, obj): if isinstance(obj, Vector2): self.x //= obj.x self.y //= obj.y else: self.x //= obj self.y //= obj return self def __imod__(self, obj): if isinstance(obj, Vector2): self.x %= obj.x self.y %= obj.y else: self.x %= obj self.y %= obj return self def __ipow__(self, obj): if isinstance(obj, Vector2): self.x **= obj.x self.y **= obj.y else: self.x **= obj self.y **= obj return self def __ilshift__(self, obj): if isinstance(obj, Vector2): self.x <<= obj.x self.y <<= obj.y else: self.x <<= obj self.y <<= obj return self def __irshift__(self, obj): if isinstance(obj, Vector2): self.x >>= obj.x self.y >>= obj.y else: self.x >>= obj self.y >>= obj return self def __iand__(self, obj): if isinstance(obj, Vector2): self.x &= obj.x self.y &= obj.y else: self.x &= obj self.y &= obj return self def __ixor__(self, obj): if isinstance(obj, Vector2): self.x ^= obj.x self.y ^= obj.y else: self.x ^= obj self.y ^= obj return self def __ior__(self, obj): if isinstance(obj, Vector2): self.x |= obj.x self.y |= obj.y else: self.x |= obj self.y |= obj return self # Unary Arithmetic Operations def __pos__(self): return Vector2(+self.x, +self.y) def __neg__(self): return Vector2(-self.x, -self.y) def __invert__(self): return Vector2(~self.x, ~self.y) def __abs__(self): return Vector2(abs(self.x), abs(self.y)) # Virtual "magnitude" Attribute def __fg_ma(self): return hypot(self.x, self.y) def __fs_ma(self, value): x, y = self.x, self.y temp = value / hypot(x, y) self.x, self.y = x * temp, y * temp magnitude = property(__fg_ma, __fs_ma, doc='Virtual "magnitude" Attribute') # Virtual "direction" Attribute def __fg_di(self): return atan2(self.y, self.x) def __fs_di(self, value): temp = hypot(self.x, self.y) self.x, self.y = cos(value) * temp, sin(value) * temp direction = property(__fg_di, __fs_di, doc='Virtual "direction" Attribute') # Virtual "degrees" Attribute def __fg_de(self): return degrees(atan2(self.x, self.y)) % 360 def __fs_de(self, value): temp = hypot(self.x, self.y) self.x, self.y = sin(radians(value)) * temp, cos(radians(value)) * temp degrees = property(__fg_de, __fs_de, doc='Virtual "degrees" Attribute') # Virtual "xy" Attribute def __fg_xy(self): return self.x, self.y def __fs_xy(self, value): self.x, self.y = value xy = property(__fg_xy, __fs_xy, doc='Virtual "xy" Attribute') # Virtual "yx" Attribute def __fg_yx(self): return self.y, self.x def __fs_yx(self, value): self.y, self.x = value yx = property(__fg_yx, __fs_yx, doc='Virtual "yx" Attribute') # Unit Vector Operations def unit_vector(self): x, y = self.x, self.y temp = hypot(x, y) return Vector2(x / temp, y / temp) def normalize(self): x, y = self.x, self.y temp = hypot(x, y) self.x, self.y = x / temp, y / temp return self # Vector Multiplication Operations def dot_product(self, vec): return self.x * vec.x + self.y * vec.y def cross_product(self, vec): return self.x * vec.y - self.y * vec.x # Geometric And Physical Reflections def reflect(self, vec): x1, y1, x2, y2 = self.x, self.y, vec.x, vec.y temp = 2 * (x1 * x2 + y1 * y2) / (x2 * x2 + y2 * y2) return Vector2(x2 * temp - x1, y2 * temp - y1) def bounce(self, vec): x1, y1, x2, y2 = self.x, self.y, +vec.y, -vec.x temp = 2 * (x1 * x2 + y1 * y2) / (x2 * x2 + y2 * y2) return Vector2(x2 * temp - x1, y2 * temp - y1) # Standard Vector Operations def project(self, vec): x, y = vec.x, vec.y temp = (self.x * x + self.y * y) / (x * x + y * y) return Vector2(x * temp, y * temp) def rotate(self, vec): x1, y1, x2, y2 = self.x, self.y, vec.x, vec.y return Vector2(x1 * x2 + y1 * y2, y1 * x2 - x1 * y2) def interpolate(self, vec, bias): a = 1 - bias return Vector2(self.x * a + vec.x * bias, self.y * a + vec.y * bias) # Other Useful Methods def near(self, vec, dist): x, y = self.x, self.y return x * x + y * y <= dist * dist def perpendicular(self): return Vector2(+self.y, -self.x) def subset(self, vec1, vec2): x1, x2 = vec1.x, vec2.x if x1 <= x2: if x1 <= self.x <= x2: y1, y2 = vec1.y, vec2.y if y1 <= y2: return y1 <= self.y <= y2 return y2 <= self.y <= y1 else: if x2 <= self.x <= x1: y1, y2 = vec1.y, vec2.y if y1 <= y2: return y1 <= self.y <= y2 return y2 <= self.y <= y1 return False # Synonymous Definitions copy = __pos__ inverse = __neg__ unit = unit_vector dot = dot_product cross = cross_product lerp = interpolate perp = perpendicular