Welcome, guest | Sign In | My Account | Store | Cart

Various functions related to Carmichael numbers (some in progress)

Python, 291 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from __future__ import division

from time import clock

from gmpy import *
from pysymbolicext import *
import psyco
psyco.full()

__all__=["carmichael","carmichael1","carmichael2","carmichael3","iscarmichael","clambda"]

#Carmichael numbers are odd composites C with at least 3 prime
#factors p(n) such that for each p(n) of C, p(n)-1 divides C-1

def carmichael1(a,b,limit=1000):
    """
    carmichael(a,b)
    For a,b (odd primes) returns array of c
    such that a*b*c is a Carmichael number
    """
    if a==b or a==2 or b==2: return []
    if not is_prime(a) or not is_prime(b): return []
    ab=a*b
    l=lcm(a-1,b-1)
    m1=ab%l
    m2=invert(m1,l)
    abl=ab*l
    c=m2
    while c<=max(a,b):
        c+=l
    xm1=ab*c-1
    solutions=[]
    while c<=limit:
        if (xm1)%(c-1)==0 and is_prime(c):
            solutions.append(c)
        c+=l
        xm1+=abl
    return solutions

def carmichael2(a,b,limit=1000):
    """
    carmichael(a,b)
    For a,b (odd primes) returns array of c
    such that a*b*c is a Carmichael number
    """
    if a==b or a==2 or b==2: return []
    if not is_prime(a) or not is_prime(b): return []
    am1=a-1
    bm1=b-1
    am1bm1=am1*bm1
    g,s,t=gcdext(am1bm1,-(am1+b))
    c=((t*(am1+bm1)//g))%bm1+1
    while c<=max(a,b):
        c+=bm1
    xm1=(a)*(b)*(c)-1
    inc=a*b*bm1
    solutions=[]
    while c<=limit:
        if (xm1)%(c-1)==0 and is_prime(c):
            solutions.append(c)
        c+=bm1
        xm1+=inc
    return solutions

#A different approach,but seems slower on many inputs
def carmichael3(*args):
    """
    carmichael(*args)  (last arg is search limit)
    For p1...pn (odd distinct primes) returns array of c
    such that p1*p2...pn*c is a Carmichael number.
    """
    limit=args[-1]
    args=args[:-1]
    if 2 in args: return []

    for arg in args:
        if not is_prime(arg): return []
    product=reduce(lambda a,b : a*b, args)
    l=reduce(lambda a,b : lcm(a,b), (x-1 for x in args))
    m1=product%l
    m2=invert(m1,l)
    productl=product*l
    c=m2
    while c<=max(args):
        c+=l
    xm1=product*c-1
    solutions=[]
    while c<=limit:
        if (xm1)%(c-1)==0 and is_prime(c):
            solutions.append(c)
        c+=l
        xm1+=productl
    return solutions

def carmichael(*args):
    """
    carmichael(*args)  (last arg is search limit)
    For p1...pn (odd distinct primes) returns array of c
    such that p1*p2...pn*c is a Carmichael number.
    Redirection function - calls carmichael 1 or 2
    depending on number of arguments.
    """
    if len(args)==3:
        return carmichael1(*args)
    else:
        return carmichael3(*args)

def iscarmichael(*args):
    """
    iscarmichael(*args). args are prime factors.
    Naively tests if the product of the given factors
    is a Carmichael number
    """
    for arg in args:
        if not is_prime(arg):
            return False
    xm1=reduce(lambda a,b : a*b, args)-1
    for arg in args:
        if xm1%(arg-1)!=0:
            return False
    return True

def cgenerate(limit=1000000,a=6,b=12,c=18):
    """
    cgenerate(a,b,c,limit)
    Return a list of all Carmichael numbers of the
    form (ak+1)*(bk+1)*(ck+1) up to limit
    """
    print "Using search limit",limit
    result=[]
    k=1
    while True:
        a1=a*k+1
        b1=b*k+1
        c1=c*k+1
        n=a1*b1*c1
        if n>limit:
            break
        if is_prime(a1) and is_prime(b1) and is_prime(c1):
            result.append((a1,b1,c1,n))
            #result.append(n)
        k+=1
    return result

def clambda(n):
    """
    clambda(n)
    Returns Carmichael's lambda function for positive integer n.
    Relies on factoring n
    """
    smallvalues=[1,1,2,2,4,2,6,2,6,4,10,2,12,6,4,4,16,6,18,4,6,10,22,2,20,12,18,\
    6,28,4,30,8,10,16,12,6,36,18,12,4,40,6,42,10,12,22,46,4,42,20,16,12,52,18,\
    20,6,18,28,58,4,60,30,6,16,12,10,66,16,22,12,70,6,72,36,20,18,30,12,78,4,54,\
    40,82,6,16,42,28,10,88,12,12,22,30,46,36,8,96,42,30,20]

    if n<=100: return smallvalues[n-1]
    factors=factor(n)
    l1=[]
    for p,e in factors:
        if p==2 and e>2:
            l1.append(2**(e-2))
        else:
            l1.append((p-1)*p**(e-1))
    return reduce(lambda a,b : lcm(a,b), l1)

numbers=cgenerate(100000000000000000000,2,4,14)
for x in numbers:
   print x[3],
   if iscarmichael(x[0],x[1],x[2]):
       print "is a Carmichael number"
   else:
       print

#----------------------------------TEST  CODE----------------------------------#

if __name__=="__main__":

    def naive(a,b,limit):
        """
        naive(a,b,limit).
        Naive implementation for benchmarking comparison.
        """
        if a==b or a==2 or b==2: return []
        if not is_prime(a) or not is_prime(b): return []
        c=b+2
        xm1=a*b*c-1
        am1=a-1
        bm1=b-1
        inc=2*a*b
        solutions=[]
        while c<limit:
            if is_prime(c):
                if xm1%am1==0 and xm1%bm1==0 and xm1%(c-1)==0:
                    solutions.append(c)
            c+=2
            xm1+=inc
        return solutions

    #---------------------------------------------------------------------------

    #a=727
    #b=1453
    #limit=500000
    #trials=10

    #start=clock()
    #for _ in xrange(trials):
    #    result=naive(a,b,limit)
    #end=clock()
    #print "Naive in",end-start,"seconds"
    #print result

    #start=clock()
    #for _ in xrange(trials):
    #    result=carmichael1(a,b,limit)
    #end=clock()
    #print "Carmichael1 in",end-start,"seconds"
    #print result

    #start=clock()
    #for _ in xrange(trials):
    #    result=carmichael2(a,b,limit)
    #end=clock()
    #print "Carmichael2 in",end-start,"seconds"
    #print result

    #start=clock()
    #for _ in xrange(trials):
    #    result=carmichael3(a,b,limit)
    #end=clock()
    #print "Carmichael3 in",end-start,"seconds"
    #print result

    #---------------------------------------------------------------------------

    #899331780481 = 239 * 409 * 1021 * 9011

    #a=239
    #b=409
    #c=1021
    #limit=10000

    #start=clock()
    #for _ in xrange(trials):
    #    result=carmichael(a,b,c,limit)
    #end=clock()
    #print "Carmichael (redirection) in",end-start,"seconds"
    #print result

    #Naive in 2.19843932679 seconds
    #[2179, 3631, 10891, 70423, 352111]
    #Carmichael in 0.0035508004509 seconds
    #[mpz(2179), mpz(3631), mpz(10891), mpz(70423), mpz(352111)]
    #Carmichael2 in 0.00424956244439 seconds
    #[mpz(2179), mpz(3631), mpz(10891), mpz(70423), mpz(352111)]
    #Carmichael3 in 0.00353201314692 seconds
    #[mpz(2179), mpz(3631), mpz(10891), mpz(70423), mpz(352111)]
    #---------------------------------------------------------------------------
    #from carmichaels import cdic

    #k=cdic.keys()
    #k.sort()
    #testlist=[]
    #for c in k:
    #    if len(cdic[c])==3:
    #        testlist.append((cdic[c][0],cdic[c][1]))
    #start=clock()
    #limit=1000000
    #result=[]
    #for test in testlist:
    #    a=test[0]
    #    b=test[1]
    #    result.append((a,b,carmichael1(a,b,limit)))
    #end=clock()
    #print result
    #print "Carmichael1: All triples < 10^12 ( 1000 numbers ) in",end-start,"seconds"
    #result=[]
    #for test in testlist:
        #a=test[0]
        #b=test[1]
        #result.append((a,b,naive(a,b,limit)))
    #end=clock()
    #print result
    #print "Naive: All triples < 10^12 ( 1000 numbers ) in",end-start,"seconds"

    #Carmichael1: All triples < 10^12 in 0.764858592363 seconds
    #Naive: All triples < 10^12 in 373.157365461 seconds
    #---------------------------------------------------------------------------
    #Print maximum number of factors found in cdic
    #from carmichaels import cdic
    #print reduce(lambda a,b: max(a,b), (len(cdic[c]) for c in cdic))

NOTE - cdic not included here

I am interested in any feedback re: style, efficiency and correctness...