Various functions related to Carmichael numbers (some in progress)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | from __future__ import division
from time import clock
from gmpy import *
from pysymbolicext import *
import psyco
psyco.full()
__all__=["carmichael","carmichael1","carmichael2","carmichael3","iscarmichael","clambda"]
#Carmichael numbers are odd composites C with at least 3 prime
#factors p(n) such that for each p(n) of C, p(n)-1 divides C-1
def carmichael1(a,b,limit=1000):
"""
carmichael(a,b)
For a,b (odd primes) returns array of c
such that a*b*c is a Carmichael number
"""
if a==b or a==2 or b==2: return []
if not is_prime(a) or not is_prime(b): return []
ab=a*b
l=lcm(a-1,b-1)
m1=ab%l
m2=invert(m1,l)
abl=ab*l
c=m2
while c<=max(a,b):
c+=l
xm1=ab*c-1
solutions=[]
while c<=limit:
if (xm1)%(c-1)==0 and is_prime(c):
solutions.append(c)
c+=l
xm1+=abl
return solutions
def carmichael2(a,b,limit=1000):
"""
carmichael(a,b)
For a,b (odd primes) returns array of c
such that a*b*c is a Carmichael number
"""
if a==b or a==2 or b==2: return []
if not is_prime(a) or not is_prime(b): return []
am1=a-1
bm1=b-1
am1bm1=am1*bm1
g,s,t=gcdext(am1bm1,-(am1+b))
c=((t*(am1+bm1)//g))%bm1+1
while c<=max(a,b):
c+=bm1
xm1=(a)*(b)*(c)-1
inc=a*b*bm1
solutions=[]
while c<=limit:
if (xm1)%(c-1)==0 and is_prime(c):
solutions.append(c)
c+=bm1
xm1+=inc
return solutions
#A different approach,but seems slower on many inputs
def carmichael3(*args):
"""
carmichael(*args) (last arg is search limit)
For p1...pn (odd distinct primes) returns array of c
such that p1*p2...pn*c is a Carmichael number.
"""
limit=args[-1]
args=args[:-1]
if 2 in args: return []
for arg in args:
if not is_prime(arg): return []
product=reduce(lambda a,b : a*b, args)
l=reduce(lambda a,b : lcm(a,b), (x-1 for x in args))
m1=product%l
m2=invert(m1,l)
productl=product*l
c=m2
while c<=max(args):
c+=l
xm1=product*c-1
solutions=[]
while c<=limit:
if (xm1)%(c-1)==0 and is_prime(c):
solutions.append(c)
c+=l
xm1+=productl
return solutions
def carmichael(*args):
"""
carmichael(*args) (last arg is search limit)
For p1...pn (odd distinct primes) returns array of c
such that p1*p2...pn*c is a Carmichael number.
Redirection function - calls carmichael 1 or 2
depending on number of arguments.
"""
if len(args)==3:
return carmichael1(*args)
else:
return carmichael3(*args)
def iscarmichael(*args):
"""
iscarmichael(*args). args are prime factors.
Naively tests if the product of the given factors
is a Carmichael number
"""
for arg in args:
if not is_prime(arg):
return False
xm1=reduce(lambda a,b : a*b, args)-1
for arg in args:
if xm1%(arg-1)!=0:
return False
return True
def cgenerate(limit=1000000,a=6,b=12,c=18):
"""
cgenerate(a,b,c,limit)
Return a list of all Carmichael numbers of the
form (ak+1)*(bk+1)*(ck+1) up to limit
"""
print "Using search limit",limit
result=[]
k=1
while True:
a1=a*k+1
b1=b*k+1
c1=c*k+1
n=a1*b1*c1
if n>limit:
break
if is_prime(a1) and is_prime(b1) and is_prime(c1):
result.append((a1,b1,c1,n))
#result.append(n)
k+=1
return result
def clambda(n):
"""
clambda(n)
Returns Carmichael's lambda function for positive integer n.
Relies on factoring n
"""
smallvalues=[1,1,2,2,4,2,6,2,6,4,10,2,12,6,4,4,16,6,18,4,6,10,22,2,20,12,18,\
6,28,4,30,8,10,16,12,6,36,18,12,4,40,6,42,10,12,22,46,4,42,20,16,12,52,18,\
20,6,18,28,58,4,60,30,6,16,12,10,66,16,22,12,70,6,72,36,20,18,30,12,78,4,54,\
40,82,6,16,42,28,10,88,12,12,22,30,46,36,8,96,42,30,20]
if n<=100: return smallvalues[n-1]
factors=factor(n)
l1=[]
for p,e in factors:
if p==2 and e>2:
l1.append(2**(e-2))
else:
l1.append((p-1)*p**(e-1))
return reduce(lambda a,b : lcm(a,b), l1)
numbers=cgenerate(100000000000000000000,2,4,14)
for x in numbers:
print x[3],
if iscarmichael(x[0],x[1],x[2]):
print "is a Carmichael number"
else:
print
#----------------------------------TEST CODE----------------------------------#
if __name__=="__main__":
def naive(a,b,limit):
"""
naive(a,b,limit).
Naive implementation for benchmarking comparison.
"""
if a==b or a==2 or b==2: return []
if not is_prime(a) or not is_prime(b): return []
c=b+2
xm1=a*b*c-1
am1=a-1
bm1=b-1
inc=2*a*b
solutions=[]
while c<limit:
if is_prime(c):
if xm1%am1==0 and xm1%bm1==0 and xm1%(c-1)==0:
solutions.append(c)
c+=2
xm1+=inc
return solutions
#---------------------------------------------------------------------------
#a=727
#b=1453
#limit=500000
#trials=10
#start=clock()
#for _ in xrange(trials):
# result=naive(a,b,limit)
#end=clock()
#print "Naive in",end-start,"seconds"
#print result
#start=clock()
#for _ in xrange(trials):
# result=carmichael1(a,b,limit)
#end=clock()
#print "Carmichael1 in",end-start,"seconds"
#print result
#start=clock()
#for _ in xrange(trials):
# result=carmichael2(a,b,limit)
#end=clock()
#print "Carmichael2 in",end-start,"seconds"
#print result
#start=clock()
#for _ in xrange(trials):
# result=carmichael3(a,b,limit)
#end=clock()
#print "Carmichael3 in",end-start,"seconds"
#print result
#---------------------------------------------------------------------------
#899331780481 = 239 * 409 * 1021 * 9011
#a=239
#b=409
#c=1021
#limit=10000
#start=clock()
#for _ in xrange(trials):
# result=carmichael(a,b,c,limit)
#end=clock()
#print "Carmichael (redirection) in",end-start,"seconds"
#print result
#Naive in 2.19843932679 seconds
#[2179, 3631, 10891, 70423, 352111]
#Carmichael in 0.0035508004509 seconds
#[mpz(2179), mpz(3631), mpz(10891), mpz(70423), mpz(352111)]
#Carmichael2 in 0.00424956244439 seconds
#[mpz(2179), mpz(3631), mpz(10891), mpz(70423), mpz(352111)]
#Carmichael3 in 0.00353201314692 seconds
#[mpz(2179), mpz(3631), mpz(10891), mpz(70423), mpz(352111)]
#---------------------------------------------------------------------------
#from carmichaels import cdic
#k=cdic.keys()
#k.sort()
#testlist=[]
#for c in k:
# if len(cdic[c])==3:
# testlist.append((cdic[c][0],cdic[c][1]))
#start=clock()
#limit=1000000
#result=[]
#for test in testlist:
# a=test[0]
# b=test[1]
# result.append((a,b,carmichael1(a,b,limit)))
#end=clock()
#print result
#print "Carmichael1: All triples < 10^12 ( 1000 numbers ) in",end-start,"seconds"
#result=[]
#for test in testlist:
#a=test[0]
#b=test[1]
#result.append((a,b,naive(a,b,limit)))
#end=clock()
#print result
#print "Naive: All triples < 10^12 ( 1000 numbers ) in",end-start,"seconds"
#Carmichael1: All triples < 10^12 in 0.764858592363 seconds
#Naive: All triples < 10^12 in 373.157365461 seconds
#---------------------------------------------------------------------------
#Print maximum number of factors found in cdic
#from carmichaels import cdic
#print reduce(lambda a,b: max(a,b), (len(cdic[c]) for c in cdic))
|
NOTE - cdic not included here
I am interested in any feedback re: style, efficiency and correctness...
Tags: algorithms, mathematics