This small snippet came about as a result of this discussion on python-ideas, requesting a new syntax for dynamically reevaluating a function each time it is called.
It is a minor alteration of version 2 of this recipe that, instead of calling eval() on string annotations, simply requires that the annotations be callable and calls them at runtime.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | #! /usr/bin/env python3
"""
runtime.py
Written by Geremy Condra
Licensed under GPLv3
Released 14 May 2009
This module provides a simple decorator used
to reevaluate function arguments at runtime
based on their annotations.
"""
from inspect import getfile, getfullargspec
from functools import wraps
def runtime(f):
"""Evaluates a function's annotations at runtime.
Usage:
>>> @runtime
... def f(x, y:lambda:[]):
... y.append(x)
... return y
...
>>> f(1)
[1]
>>> f(2)
[2]
Arguments evaluated at runtime must be treated as
though they were keyword-only arguments for the
purposes of assignment.
Good:
>>> f(4, y=[1, 2, 3])
[1, 2, 3, 4]
Bad:
>>> f(4, [1, 2, 3])
TypeError: f() got multiple values for keyword argument 'y'
For this reason you should always make the arguments
you want evaluated at runtime the last non-keyword
arguments to your function.
If you need a varargs argument, just place your
runtime-evaluated arguments afterwards.
Good:
>>> @runtime
... def f(*args, z: lambda:[]):
... z.extend(args)
... return z
...
>>> f(1, 2, 3, 4)
[1, 2, 3, 4]
>>> f(4, 5, 6, 7, z=[1, 2, 3])
[1, 2, 3, 4, 5, 6, 7]
Bad:
>>> @runtime
... def f(z:'[]', *args):
... z.extend(args)
... return z
...
>>> f(1, 2, 3, 4)
TypeError: f() got multiple values for keyword argument 'z'
"""
# get the functions' file of origin
filename = getfile(f)
# build the evaluatable annotations table
defaults = getfullargspec(f)[-1]
# build the wrapping function
@wraps(f)
def wrapped(*args, **kwargs):
# update kwargs with the unfilled defaults, evaluated at runtime
for k, v in defaults.items():
if k not in kwargs:
kwargs[k] = v()
return f(*args, **kwargs)
# and return it
return wrapped
@runtime
def example1(x, y: lambda:[]):
y.append(x)
return y
@runtime
def example2(*, x: lambda:a**2+2*b+c):
return x
if __name__ == "__main__":
print("Testing example1")
print(example1(1))
print(example1(2))
print(example1(3))
print()
print("Testing example2 with values 0, 1, 2")
a, b, c = 0, 1, 2
print(example2())
print("Changing a to 5")
a = 5
print(example2())
|