Welcome, guest | Sign In | My Account | Store | Cart

I wrote a new version of Quadratic.py where I applied few changes, which are needed for the running of my new program Cubic.py, However, the new version is now available for download.

Python, 549 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#On the name of ALLAH and may the blessing and peace of Allah 
#be upon the Messenger of Allah Mohamed Salla Allahu Aliahi Wassalam.
#Author : Fouad Teniou
#Date : 10/01/09
#version :2.4

"""Solving polynomial equations involve using long and synthetic division.
I applied in my program Cubic.py, however, the synthetic division.
Finding the integers and rational zeros (a) of a polynomial p(x), if any,
shows us that (x - a)s are factors of p(x) and p(x)/(x - a) = q(x)
therefore p(x) can be written p(x) = (x - a)q(x)"""


from Quadratic import *

class Cubic(object):
    """ Class that represent a Cubic Polynomial Equation
    with a,b,c,d properties"""

    def __init__(self,a,b,c,d):
        """ Cubic constructor takes a,b,c,d coefficients """
        
        self.__a = a
        self.__b = b
        self.__c = c
        self.__d = d
        
        self.signb = self._checkSign(self.__b)
        self.signc = self._checkSign(self.__c)
        self.signd = self._checkSign(self.__d)
  
    def __str__(self):
        """ String representation of Cubic Polynomial Equation"""
        
        try:
            self.c1 = Cubic.syntheticDivision(self)[0]
            self.c2 = Cubic.syntheticDivision(self)[1]
            if self.c1 == float and self.c2 == float:
                self.c3 ="-"
                self.c4 ="+"
            else :
                self.c3 = self._checkSign(float(Cubic.syntheticDivision(self)[0])*-1)
                self.c4 = self._checkSign(float(Cubic.syntheticDivision(self)[1])*-1)
                

            if self.__d == 0:
                return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx = 0 \n \
                        \n<The linear factorization : p(x) = %sx(x%s%s)(x%s%s) \n\
                        " % (self.__a,chr(252),self.signb,self.__b,chr(253),
                        self.signc,self.__c,self.__a,self.c3,-1*float(self.c1),
                        self.c4,-1*float(self.c2))
        
            else :
                if self.__a == 1:
                    for i in Cubic.integerZero(self):
                        if (((self.__a*(i**3)) + (self.__b*(i**2))+ (self.__c*i )+ self.__d == 0)
                            and float(i) != float(self.c2) and float(i) != float(self.c1)):
                            return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx %s %s = 0 \
                                    \n\n<The integers zeros  are :\n\n%s\n \
                                    \n<The linear factorization : p(x) = (x%s%s)(x%s%s)(x%s%s) \n\
                                    " % (self.__a,chr(252),self.signb,self.__b,chr(253),self.signc,
                                    self.__c,self.signd,self.__d,Cubic.integerZero(self),self.c3,
                                    -1*float(self.c1),self.c4,-1*float(self.c2),(self._checkSign(-1*i)),-1*i)
                       
                    return "\n<None of the integers zeros %s \n\n checks p(x) = %sx%s %s %sx%s %s %sx %s %s = 0\n\n " \
                            % (Cubic.integerZero(self),self.__a,chr(252),self.signb,self.__b,chr(253),self.signc,self.__c,
                                self.signd,self.__d)
        
                else :
                    for j in Cubic.nonintegersRationalZero(self)[1]:
                        if ((self.__a*(float(str(j))**3)) + (self.__b*(float(str(j))**2))+
                            (self.__c*float(str(j)) )+ self.__d == 0.00):
                            return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx %s %s = 0 \
                                \n\n<The integers Zeros are :\n\n %s \
                                \n\n<The nonintegers Rational Zeros are :\n\n %s \
                                \n<The linear factorization : p(x) = (x%s%s)(x%s%s)(x%s%s) \n\
                                " % (self.__a,chr(252),self.signb,self.__b,chr(253),self.signc,self.__c,
                                self.signd,self.__d,Cubic.integerZero(self),nonintegersRationalZero(self)[0],
                                self.c3,-1*float(self.c1),self.c4,-1*float(self.c2),(self._checkSign(-1*j)),-1*j)
                        
                    return "\n<None of the non integers zeros %s \n\n checks p(x) = %sx%s %s %sx%s %s %sx %s %s  = 0\n\n" \
                             % (Cubic.nonintegersRationalZero(self)[0],self.__a,chr(252),self.signb,self.__b,
                                chr(253),self.signc,self.__c,self.signd,self.__d)
        except TypeError:
            if self.__a == 1:
                 raise "\n<complex solutions \n\n<The integers zeros are %s " \
                  % Cubic.integerZero(self)
            else :   
                raise "\n<complex solutions \n\n<The nonintegers zeros are %s " \
                  % Cubic.nonintegersRationalZero(self)[0]

    def get_a(self):
        """ Get method for _a attribute """
        
        return self.__a
        
    def set_a(self,value):
        """ Set method for _a attribute """
        
        self.__a = value
        
    def del_a(self):
        """Delete method for _a attribute"""
        
        del self.__a

    #Create a property
    _a = property(get_a,set_a,del_a,"a coefficient")

    def get_b(self):
        """ Get method for _b attribute """

        return self.__b

    def set_b(self,value):
        """ Set method for _b attribute """
        
        self.__b = value
        
    def del_b(self):
        """Delete method for D attribute"""

        del self.__b

    #Create a property
    _b = property(get_b,set_b,del_b,"b coefficient")

    def get_c(self):
        """ Get method for _c attribute """

        return self.__c

    def set_c(self,value):
        """ Set method for _c attribute """
        
        self.__c = value
        
    def del_c(self):
        """Delete method for _c attribute"""

        del self.__c

    #Create a property
    _c = property(get_c,set_c,del_c,"c coefficient")

    def get_d(self):
        """ Get method for _d attribute """

        return self.__d

    def set_d(self,value):
        """ Set method for _d attribute """
        
        self.__d = value
        
    def del_d(self):
        """Delete method for F attribute"""

        del self.__d

    #Create a property
    _d = property(get_d,set_d,del_d,"d coefficient")
    
    def _checkSign(self,value):
        """ Utility method to check the values's sign
        and return a sign string"""
        
        if value >= 0:
            return "+"
        else :
            return ""
        
    def integerZero(self):
        """ Computes Integers zeros of d coefficient """
        
        res = []
        for item in range (1,abs(self.__d)+1):
            if self.__d%item == 0:
                res.append(item)
                res.append(-1*item)
        return res
    
    def nonintegersRationalZero(self):
        """ Computes noninteger rational zeros """
        
        res1 = []
        res2 = []
        res3 = []
        res4 = []
        
        for b in range(1,abs(self.__a)+1):
            if self.__a%b == 0:
                res1.append(b)
        for i in Cubic.integerZero(self):
            if i>0:
                for j in res1:
                    if  i%j!=0:
                        res2.append( "%2.2f" % ((i)/float(j)) ),res2.append( "%2.2f" % ((-i)/float(j)) )
                        for x in res2:
                            if res2.count(x)>1:
                                res2.remove(x)
                                if x == ("%2.2f" % ((i)/float(j))):
                                    res3.append("%d/%d" % (i,j)),res3.append("%d/%d" % (-i,j))
                        res4.append("%d/%d" % (i,j)),res4.append("%d/%d" % (-i,j))     
                        for w in res3:
                            if w in res4:
                               res4.remove(w)
        return (res4,res2)
    
    def syntheticDivision(self):
        """ Computes coefficients A,B,C by synthetic division """
        
        assert self.__a != 0,"(a) coefficient should be differtent than zero"
        
        self._A = self.__a
        self._B = self.__b
        self._C = self.__c
        
        y = Quadratic()
        if self.__d != 0 and (self.__b**2 - 4*(self.__a *self.__c))>=0:
            for i in Cubic.integerZero(self):
                if (self.__a*((i)**3)) + (self.__b*((i)**2) )+(self.__c*(i) )+ self.__d == 0:
                    self._A = self.__a
                    self._B = self.__b + self._A*i
                    self._C = self.__c + self._B*i
            y(a=self._A,b=self._B,c=self._C)
            return  Quadratic.__call__(y)
            
        else:            
            
            y(a=self._A,b=self._B,c=self._C)
            return  Quadratic.__call__(y)            
             
        
    


        
if __name__ == "__main__":

    cubic1 = Cubic(1,3,-7,-21)
    print cubic1
    print
    cubic5 = Cubic(1,-3,-13,15)
    print cubic5
    print
    cubic2 = Cubic(1,2,-7,-10)
    print cubic2
    print
    cubic3 = Cubic(5,-1,-2,0)
    print cubic3
    print
    cubic4 = Cubic(2,-6,-13,18)
    print cubic4
    print
    cubic4 = Cubic(2,3,-4,-3)
    print cubic4
    print
    

################################################################################################

#c:\hp\bin\Python>python "C:\Documents\Programs\Cubic.py"

#<Cubic Equation: p(x) = 1x³ + 3x²  -7x  -21 = 0

#<The integers zeros  are :

#[1, -1, 3, -3, 7, -7, 21, -21]

#<The linear factorization : p(x) = (x-2.65)(x+2.65)(x+3)


#<Cubic Equation: p(x) = 1x³  -3x²  -13x + 15 = 0

#<The integers zeros  are :

#[1, -1, 3, -3, 5, -5, 15, -15]

#<The linear factorization : p(x) = (x-1.0)(x+3.0)(x-5)


#<None of the integers zeros [1, -1, 2, -2, 5, -5, 10, -10]

# checks p(x) = 1x³ + 2x²  -7x  -10 = 0


#<Cubic Equation: p(x) = 5x³  -1x²  -2x = 0

#<The linear factorization : p(x) = 5x(x-0.74)(x+0.54)


#<None of the non integers zeros ['1/2', '-1/2', '3/2', '-3/2', '9/2', '-9/2']

 #checks p(x) = 2x³  -6x²  -13x + 18  = 0


#<None of the non integers zeros ['1/2', '-1/2', '3/2', '-3/2']

 #checks p(x) = 2x³ + 3x²  -4x  -3  = 0


#c:\hp\bin\Python
##########################################################################################

#Version : Python 3.2

#from Quadratic5_7 import *

#class Cubic(object):
#    """ Class that represent a Cubic Polynomial Equation
#    with a,b,c,d properties"""
#
#    def __init__(self,a,b,c,d):
#        """ Cubic constructor takes a,b,c,d coefficients """
#        
#        self.__a = a
#        self.__b = b
#        self.__c = c
#        self.__d = d
#        
#        self.signb = self._checkSign(self.__b)
#        self.signc = self._checkSign(self.__c)
#        self.signd = self._checkSign(self.__d)
#  
#    def __str__(self):
#        """ String representation of Cubic Polynomial Equation"""
#        
#        try:
#            self.c1 = Cubic.syntheticDivision(self)[0]
#            self.c2 = Cubic.syntheticDivision(self)[1]
#            if self.c1 == float and self.c2 == float:
#                self.c3 ="-"
#                self.c4 ="+"
#            else :
#                self.c3 = self._checkSign(float(Cubic.syntheticDivision(self)[0])*-1)
#                self.c4 = self._checkSign(float(Cubic.syntheticDivision(self)[1])*-1)
#                
#
#            if self.__d == 0:
#                return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx = 0 \n \
#                        \n<The linear factorization : p(x) = %sx(x%s%s)(x%s%s) \n\
#                        " % (self.__a,chr(179),self.signb,self.__b,chr(178),
#                        self.signc,self.__c,self.__a,self.c3,-1*float(self.c1),
#                        self.c4,-1*float(self.c2))
#        
#            else :
#                if self.__a == 1:
#                    for i in Cubic.integerZero(self):
#                        if (((self.__a*(i**3)) + (self.__b*(i**2))+ (self.__c*i )+ #self.__d == 0)
#                            and float(i) != float(self.c2) and float(i) != float(self.c1)):
#                            return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx %s %#s = 0 \
#                                    \n\n<The integers zeros  are :\n\n%s\n \
#                                    \n<The linear factorization : p(x) = (x%s%s)(x%s%s)(x%s%s) \n\
#                                    " % (self.__a,chr(179),self.signb,self.__b,chr(178),self.signc,
#                                    self.__c,self.signd,self.__d,Cubic.integerZero(self),self.c3,
#                                    -1*float(self.c1),self.c4,-1*float(self.c2),(self._checkSign(-1*i)),-1*i)
                       
#                    return "\n<None of the integers zeros %s \n\n checks p(x) = %sx%s %s #%sx%s %s %sx %s %s = 0\n\n " \
#                            % (Cubic.integerZero(self),self.__a,chr(179),self.signb,self.__b,chr(178),self.signc,self.__c,
#                                self.signd,self.__d)
#        
#                else :
#                    for j in Cubic.nonintegersRationalZero(self)[1]:
#                        if ((self.__a*(float(str(j))**3)) + (self.__b*(float(str(j))**2))#+
#                            (self.__c*float(str(j)) )+ self.__d == 0.00):
#                            return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx %s %#s = 0 \
#                                \n\n<The integers Zeros are :\n\n %s \
#                                \n\n<The nonintegers Rational Zeros are :\n\n %s \
#                                \n<The linear factorization : p(x) = (x%s%s)(x%s%s)(x%s%#s) \n\
#                                " % (self.__a,chr(179),self.signb,self.__b,chr(178),self.signc,self.__c,
#                                self.signd,self.__d,Cubic.integerZero(self),nonintegersRationalZero(self)[0]
#                                self.c3,-1*float(self.c1),self.c4,-1*float(self.c2),(self._checkSign(-1*j)),-1*j)
                        
#                    return "\n<None of the non integers zeros %s \n\n checks p(x) = %sx%#s %s %sx%s %s %sx %s %s  = 0\n\n" \
#                             % (Cubic.nonintegersRationalZero(self)[0],self.__a,chr(179),self.signb,self.__b,
#                                chr(178),self.signc,self.__c,self.signd,self.__d)
#        except TypeError:
#            if self.__a == 1:
#                 raise "\n<complex solutions \n\n<The integers zeros are %s " \
#                  % Cubic.integerZero(self)
#            else :   
#                raise "\n<complex solutions \n\n<The nonintegers zeros are %s " \
#                  % Cubic.nonintegersRationalZero(self)[0]
#
#    def get_a(self):
#        """ Get method for _a attribute """
#        
#        return self.__a
#        
#    def set_a(self,value):
#        """ Set method for _a attribute """
#        
#        self.__a = value
#        
#    def del_a(self):
#       """Delete method for _a attribute"""
#        
#        del self.__a
#    #Create a property
#    _a = property(get_a,set_a,del_a,"a coefficient")

#    def get_b(self):
#        """ Get method for _b attribute """
#
#        return self.__b
#
#    def set_b(self,value):
#        """ Set method for _b attribute """
#        
#        self.__b = value
#        
#    def del_b(self):
#        """Delete method for D attribute"""
#
#        del self.__b
#
#    #Create a property
#    _b = property(get_b,set_b,del_b,"b coefficient")
#
#    def get_c(self):
#        """ Get method for _c attribute """
#
#        return self.__c
#
#    def set_c(self,value):
#        """ Set method for _c attribute """
#        
#        self.__c = value
#        
#    def del_c(self):
#        """Delete method for _c attribute"""
        del self.__c

#    #Create a property
#    _c = property(get_c,set_c,del_c,"c coefficient")
#
#    def get_d(self):
#        """ Get method for _d attribute """

#        return self.__d
#    def set_d(self,value):
#        """ Set method for _d attribute """
#        
#        self.__d = value
#        
#    def del_d(self):
#        """Delete method for F attribute"""
#
#        del self.__d
#
#    #Create a property
#    _d = property(get_d,set_d,del_d,"d coefficient")
#    
#    def _checkSign(self,value):
#        """ Utility method to check the values's sign
#        and return a sign string"""
#        
#        if value >= 0:
#            return "+"
#        else :
#            return ""
#        
#    def integerZero(self):
#        """ Computes Integers zeros of d coefficient """
#        
#        res = []
#        for item in range (1,abs(self.__d)+1):
#            if self.__d%item == 0:
#                res.append(item)
#                res.append(-1*item)
#        return res
#    
#    def nonintegersRationalZero(self):
#        """ Computes noninteger rational zeros """
#        
#        res1 = []
#        res2 = []
#        res3 = []
#        res4 = []
#        
#        for b in range(1,abs(self.__a)+1):
#            if self.__a%b == 0:
#                res1.append(b)
#        for i in Cubic.integerZero(self):
#            if i>0:
#                for j in res1:
#                    if  i%j!=0:
#                        res2.append( "%2.2f" % ((i)/float(j)) ),res2.append( "%2.2f" % ((-i)/float(j)) )
#                        for x in res2:
#                            if res2.count(x)>1:
#                                res2.remove(x)
#                                if x == ("%2.2f" % ((i)/float(j))):
#                                    res3.append("%d/%d" % (i,j)),res3.append("%d/%d" % (-i,j))
#                        res4.append("%d/%d" % (i,j)),res4.append("%d/%d" % (-i,j))     
#                        for w in res3:
#                            if w in res4:
#                               res4.remove(w)
#        return (res4,res2)
#    
#    def syntheticDivision(self):
#        """ Computes coefficients A,B,C by synthetic division """
#        
#        assert self.__a != 0,"(a) coefficient should be differtent than zero"
#        
#        self._A = self.__a
#        self._B = self.__b
#        self._C = self.__c
#        
#        y = Quadratic()
#        if self.__d != 0 and (self.__b**2 - 4*(self.__a *self.__c))>=0:
#            for i in Cubic.integerZero(self):
#                if (self.__a*((i)**3)) + (self.__b*((i)**2) )+(self.__c*(i) )+ self.__d #== 0:
#                    self._A = self.__a
#                    self._B = self.__b + self._A*i
#                    self._C = self.__c + self._B*i
#            y(a=self._A,b=self._B,c=self._C)
#            return  Quadratic.__call__(y)
#            
#        else:            
#            
#            y(a=self._A,b=self._B,c=self._C)
#            return  Quadratic.__call__(y)            
#             
#        
#    


        
#if __name__ == "__main__":
#    cubic1 = Cubic(1,3,-7,-21)
#    print(cubic1)
#    print()
#    cubic5 = Cubic(1,-3,-13,15)
#    print(cubic5)
#    print()
#    cubic2 = Cubic(1,2,-7,-10)
#    print(cubic2)
#    print()
#    cubic3 = Cubic(5,-1,-2,0)
#    print(cubic3)
#    print()
#    cubic4 = Cubic(2,-6,-13,18)
#    print(cubic4)
#    print()
#    cubic4 = Cubic(2,3,-4,-3)
#    print(cubic4)
#    print()
#
Created by Fouad Teniou on Sat, 10 Jan 2009 (MIT)
Python recipes (4591)
Fouad Teniou's recipes (37)

Required Modules

Other Information and Tasks