I wrote a new version of Quadratic.py where I applied few changes, which are needed for the running of my new program Cubic.py, However, the new version is now available for download.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | #On the name of ALLAH and may the blessing and peace of Allah
#be upon the Messenger of Allah Mohamed Salla Allahu Aliahi Wassalam.
#Author : Fouad Teniou
#Date : 10/01/09
#version :2.4
"""Solving polynomial equations involve using long and synthetic division.
I applied in my program Cubic.py, however, the synthetic division.
Finding the integers and rational zeros (a) of a polynomial p(x), if any,
shows us that (x - a)s are factors of p(x) and p(x)/(x - a) = q(x)
therefore p(x) can be written p(x) = (x - a)q(x)"""
from Quadratic import *
class Cubic(object):
""" Class that represent a Cubic Polynomial Equation
with a,b,c,d properties"""
def __init__(self,a,b,c,d):
""" Cubic constructor takes a,b,c,d coefficients """
self.__a = a
self.__b = b
self.__c = c
self.__d = d
self.signb = self._checkSign(self.__b)
self.signc = self._checkSign(self.__c)
self.signd = self._checkSign(self.__d)
def __str__(self):
""" String representation of Cubic Polynomial Equation"""
try:
self.c1 = Cubic.syntheticDivision(self)[0]
self.c2 = Cubic.syntheticDivision(self)[1]
if self.c1 == float and self.c2 == float:
self.c3 ="-"
self.c4 ="+"
else :
self.c3 = self._checkSign(float(Cubic.syntheticDivision(self)[0])*-1)
self.c4 = self._checkSign(float(Cubic.syntheticDivision(self)[1])*-1)
if self.__d == 0:
return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx = 0 \n \
\n<The linear factorization : p(x) = %sx(x%s%s)(x%s%s) \n\
" % (self.__a,chr(252),self.signb,self.__b,chr(253),
self.signc,self.__c,self.__a,self.c3,-1*float(self.c1),
self.c4,-1*float(self.c2))
else :
if self.__a == 1:
for i in Cubic.integerZero(self):
if (((self.__a*(i**3)) + (self.__b*(i**2))+ (self.__c*i )+ self.__d == 0)
and float(i) != float(self.c2) and float(i) != float(self.c1)):
return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx %s %s = 0 \
\n\n<The integers zeros are :\n\n%s\n \
\n<The linear factorization : p(x) = (x%s%s)(x%s%s)(x%s%s) \n\
" % (self.__a,chr(252),self.signb,self.__b,chr(253),self.signc,
self.__c,self.signd,self.__d,Cubic.integerZero(self),self.c3,
-1*float(self.c1),self.c4,-1*float(self.c2),(self._checkSign(-1*i)),-1*i)
return "\n<None of the integers zeros %s \n\n checks p(x) = %sx%s %s %sx%s %s %sx %s %s = 0\n\n " \
% (Cubic.integerZero(self),self.__a,chr(252),self.signb,self.__b,chr(253),self.signc,self.__c,
self.signd,self.__d)
else :
for j in Cubic.nonintegersRationalZero(self)[1]:
if ((self.__a*(float(str(j))**3)) + (self.__b*(float(str(j))**2))+
(self.__c*float(str(j)) )+ self.__d == 0.00):
return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx %s %s = 0 \
\n\n<The integers Zeros are :\n\n %s \
\n\n<The nonintegers Rational Zeros are :\n\n %s \
\n<The linear factorization : p(x) = (x%s%s)(x%s%s)(x%s%s) \n\
" % (self.__a,chr(252),self.signb,self.__b,chr(253),self.signc,self.__c,
self.signd,self.__d,Cubic.integerZero(self),nonintegersRationalZero(self)[0],
self.c3,-1*float(self.c1),self.c4,-1*float(self.c2),(self._checkSign(-1*j)),-1*j)
return "\n<None of the non integers zeros %s \n\n checks p(x) = %sx%s %s %sx%s %s %sx %s %s = 0\n\n" \
% (Cubic.nonintegersRationalZero(self)[0],self.__a,chr(252),self.signb,self.__b,
chr(253),self.signc,self.__c,self.signd,self.__d)
except TypeError:
if self.__a == 1:
raise "\n<complex solutions \n\n<The integers zeros are %s " \
% Cubic.integerZero(self)
else :
raise "\n<complex solutions \n\n<The nonintegers zeros are %s " \
% Cubic.nonintegersRationalZero(self)[0]
def get_a(self):
""" Get method for _a attribute """
return self.__a
def set_a(self,value):
""" Set method for _a attribute """
self.__a = value
def del_a(self):
"""Delete method for _a attribute"""
del self.__a
#Create a property
_a = property(get_a,set_a,del_a,"a coefficient")
def get_b(self):
""" Get method for _b attribute """
return self.__b
def set_b(self,value):
""" Set method for _b attribute """
self.__b = value
def del_b(self):
"""Delete method for D attribute"""
del self.__b
#Create a property
_b = property(get_b,set_b,del_b,"b coefficient")
def get_c(self):
""" Get method for _c attribute """
return self.__c
def set_c(self,value):
""" Set method for _c attribute """
self.__c = value
def del_c(self):
"""Delete method for _c attribute"""
del self.__c
#Create a property
_c = property(get_c,set_c,del_c,"c coefficient")
def get_d(self):
""" Get method for _d attribute """
return self.__d
def set_d(self,value):
""" Set method for _d attribute """
self.__d = value
def del_d(self):
"""Delete method for F attribute"""
del self.__d
#Create a property
_d = property(get_d,set_d,del_d,"d coefficient")
def _checkSign(self,value):
""" Utility method to check the values's sign
and return a sign string"""
if value >= 0:
return "+"
else :
return ""
def integerZero(self):
""" Computes Integers zeros of d coefficient """
res = []
for item in range (1,abs(self.__d)+1):
if self.__d%item == 0:
res.append(item)
res.append(-1*item)
return res
def nonintegersRationalZero(self):
""" Computes noninteger rational zeros """
res1 = []
res2 = []
res3 = []
res4 = []
for b in range(1,abs(self.__a)+1):
if self.__a%b == 0:
res1.append(b)
for i in Cubic.integerZero(self):
if i>0:
for j in res1:
if i%j!=0:
res2.append( "%2.2f" % ((i)/float(j)) ),res2.append( "%2.2f" % ((-i)/float(j)) )
for x in res2:
if res2.count(x)>1:
res2.remove(x)
if x == ("%2.2f" % ((i)/float(j))):
res3.append("%d/%d" % (i,j)),res3.append("%d/%d" % (-i,j))
res4.append("%d/%d" % (i,j)),res4.append("%d/%d" % (-i,j))
for w in res3:
if w in res4:
res4.remove(w)
return (res4,res2)
def syntheticDivision(self):
""" Computes coefficients A,B,C by synthetic division """
assert self.__a != 0,"(a) coefficient should be differtent than zero"
self._A = self.__a
self._B = self.__b
self._C = self.__c
y = Quadratic()
if self.__d != 0 and (self.__b**2 - 4*(self.__a *self.__c))>=0:
for i in Cubic.integerZero(self):
if (self.__a*((i)**3)) + (self.__b*((i)**2) )+(self.__c*(i) )+ self.__d == 0:
self._A = self.__a
self._B = self.__b + self._A*i
self._C = self.__c + self._B*i
y(a=self._A,b=self._B,c=self._C)
return Quadratic.__call__(y)
else:
y(a=self._A,b=self._B,c=self._C)
return Quadratic.__call__(y)
if __name__ == "__main__":
cubic1 = Cubic(1,3,-7,-21)
print cubic1
print
cubic5 = Cubic(1,-3,-13,15)
print cubic5
print
cubic2 = Cubic(1,2,-7,-10)
print cubic2
print
cubic3 = Cubic(5,-1,-2,0)
print cubic3
print
cubic4 = Cubic(2,-6,-13,18)
print cubic4
print
cubic4 = Cubic(2,3,-4,-3)
print cubic4
print
################################################################################################
#c:\hp\bin\Python>python "C:\Documents\Programs\Cubic.py"
#<Cubic Equation: p(x) = 1x³ + 3x² -7x -21 = 0
#<The integers zeros are :
#[1, -1, 3, -3, 7, -7, 21, -21]
#<The linear factorization : p(x) = (x-2.65)(x+2.65)(x+3)
#<Cubic Equation: p(x) = 1x³ -3x² -13x + 15 = 0
#<The integers zeros are :
#[1, -1, 3, -3, 5, -5, 15, -15]
#<The linear factorization : p(x) = (x-1.0)(x+3.0)(x-5)
#<None of the integers zeros [1, -1, 2, -2, 5, -5, 10, -10]
# checks p(x) = 1x³ + 2x² -7x -10 = 0
#<Cubic Equation: p(x) = 5x³ -1x² -2x = 0
#<The linear factorization : p(x) = 5x(x-0.74)(x+0.54)
#<None of the non integers zeros ['1/2', '-1/2', '3/2', '-3/2', '9/2', '-9/2']
#checks p(x) = 2x³ -6x² -13x + 18 = 0
#<None of the non integers zeros ['1/2', '-1/2', '3/2', '-3/2']
#checks p(x) = 2x³ + 3x² -4x -3 = 0
#c:\hp\bin\Python
##########################################################################################
#Version : Python 3.2
#from Quadratic5_7 import *
#class Cubic(object):
# """ Class that represent a Cubic Polynomial Equation
# with a,b,c,d properties"""
#
# def __init__(self,a,b,c,d):
# """ Cubic constructor takes a,b,c,d coefficients """
#
# self.__a = a
# self.__b = b
# self.__c = c
# self.__d = d
#
# self.signb = self._checkSign(self.__b)
# self.signc = self._checkSign(self.__c)
# self.signd = self._checkSign(self.__d)
#
# def __str__(self):
# """ String representation of Cubic Polynomial Equation"""
#
# try:
# self.c1 = Cubic.syntheticDivision(self)[0]
# self.c2 = Cubic.syntheticDivision(self)[1]
# if self.c1 == float and self.c2 == float:
# self.c3 ="-"
# self.c4 ="+"
# else :
# self.c3 = self._checkSign(float(Cubic.syntheticDivision(self)[0])*-1)
# self.c4 = self._checkSign(float(Cubic.syntheticDivision(self)[1])*-1)
#
#
# if self.__d == 0:
# return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx = 0 \n \
# \n<The linear factorization : p(x) = %sx(x%s%s)(x%s%s) \n\
# " % (self.__a,chr(179),self.signb,self.__b,chr(178),
# self.signc,self.__c,self.__a,self.c3,-1*float(self.c1),
# self.c4,-1*float(self.c2))
#
# else :
# if self.__a == 1:
# for i in Cubic.integerZero(self):
# if (((self.__a*(i**3)) + (self.__b*(i**2))+ (self.__c*i )+ #self.__d == 0)
# and float(i) != float(self.c2) and float(i) != float(self.c1)):
# return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx %s %#s = 0 \
# \n\n<The integers zeros are :\n\n%s\n \
# \n<The linear factorization : p(x) = (x%s%s)(x%s%s)(x%s%s) \n\
# " % (self.__a,chr(179),self.signb,self.__b,chr(178),self.signc,
# self.__c,self.signd,self.__d,Cubic.integerZero(self),self.c3,
# -1*float(self.c1),self.c4,-1*float(self.c2),(self._checkSign(-1*i)),-1*i)
# return "\n<None of the integers zeros %s \n\n checks p(x) = %sx%s %s #%sx%s %s %sx %s %s = 0\n\n " \
# % (Cubic.integerZero(self),self.__a,chr(179),self.signb,self.__b,chr(178),self.signc,self.__c,
# self.signd,self.__d)
#
# else :
# for j in Cubic.nonintegersRationalZero(self)[1]:
# if ((self.__a*(float(str(j))**3)) + (self.__b*(float(str(j))**2))#+
# (self.__c*float(str(j)) )+ self.__d == 0.00):
# return "\n<Cubic Equation: p(x) = %sx%s %s %sx%s %s %sx %s %#s = 0 \
# \n\n<The integers Zeros are :\n\n %s \
# \n\n<The nonintegers Rational Zeros are :\n\n %s \
# \n<The linear factorization : p(x) = (x%s%s)(x%s%s)(x%s%#s) \n\
# " % (self.__a,chr(179),self.signb,self.__b,chr(178),self.signc,self.__c,
# self.signd,self.__d,Cubic.integerZero(self),nonintegersRationalZero(self)[0]
# self.c3,-1*float(self.c1),self.c4,-1*float(self.c2),(self._checkSign(-1*j)),-1*j)
# return "\n<None of the non integers zeros %s \n\n checks p(x) = %sx%#s %s %sx%s %s %sx %s %s = 0\n\n" \
# % (Cubic.nonintegersRationalZero(self)[0],self.__a,chr(179),self.signb,self.__b,
# chr(178),self.signc,self.__c,self.signd,self.__d)
# except TypeError:
# if self.__a == 1:
# raise "\n<complex solutions \n\n<The integers zeros are %s " \
# % Cubic.integerZero(self)
# else :
# raise "\n<complex solutions \n\n<The nonintegers zeros are %s " \
# % Cubic.nonintegersRationalZero(self)[0]
#
# def get_a(self):
# """ Get method for _a attribute """
#
# return self.__a
#
# def set_a(self,value):
# """ Set method for _a attribute """
#
# self.__a = value
#
# def del_a(self):
# """Delete method for _a attribute"""
#
# del self.__a
# #Create a property
# _a = property(get_a,set_a,del_a,"a coefficient")
# def get_b(self):
# """ Get method for _b attribute """
#
# return self.__b
#
# def set_b(self,value):
# """ Set method for _b attribute """
#
# self.__b = value
#
# def del_b(self):
# """Delete method for D attribute"""
#
# del self.__b
#
# #Create a property
# _b = property(get_b,set_b,del_b,"b coefficient")
#
# def get_c(self):
# """ Get method for _c attribute """
#
# return self.__c
#
# def set_c(self,value):
# """ Set method for _c attribute """
#
# self.__c = value
#
# def del_c(self):
# """Delete method for _c attribute"""
del self.__c
# #Create a property
# _c = property(get_c,set_c,del_c,"c coefficient")
#
# def get_d(self):
# """ Get method for _d attribute """
# return self.__d
# def set_d(self,value):
# """ Set method for _d attribute """
#
# self.__d = value
#
# def del_d(self):
# """Delete method for F attribute"""
#
# del self.__d
#
# #Create a property
# _d = property(get_d,set_d,del_d,"d coefficient")
#
# def _checkSign(self,value):
# """ Utility method to check the values's sign
# and return a sign string"""
#
# if value >= 0:
# return "+"
# else :
# return ""
#
# def integerZero(self):
# """ Computes Integers zeros of d coefficient """
#
# res = []
# for item in range (1,abs(self.__d)+1):
# if self.__d%item == 0:
# res.append(item)
# res.append(-1*item)
# return res
#
# def nonintegersRationalZero(self):
# """ Computes noninteger rational zeros """
#
# res1 = []
# res2 = []
# res3 = []
# res4 = []
#
# for b in range(1,abs(self.__a)+1):
# if self.__a%b == 0:
# res1.append(b)
# for i in Cubic.integerZero(self):
# if i>0:
# for j in res1:
# if i%j!=0:
# res2.append( "%2.2f" % ((i)/float(j)) ),res2.append( "%2.2f" % ((-i)/float(j)) )
# for x in res2:
# if res2.count(x)>1:
# res2.remove(x)
# if x == ("%2.2f" % ((i)/float(j))):
# res3.append("%d/%d" % (i,j)),res3.append("%d/%d" % (-i,j))
# res4.append("%d/%d" % (i,j)),res4.append("%d/%d" % (-i,j))
# for w in res3:
# if w in res4:
# res4.remove(w)
# return (res4,res2)
#
# def syntheticDivision(self):
# """ Computes coefficients A,B,C by synthetic division """
#
# assert self.__a != 0,"(a) coefficient should be differtent than zero"
#
# self._A = self.__a
# self._B = self.__b
# self._C = self.__c
#
# y = Quadratic()
# if self.__d != 0 and (self.__b**2 - 4*(self.__a *self.__c))>=0:
# for i in Cubic.integerZero(self):
# if (self.__a*((i)**3)) + (self.__b*((i)**2) )+(self.__c*(i) )+ self.__d #== 0:
# self._A = self.__a
# self._B = self.__b + self._A*i
# self._C = self.__c + self._B*i
# y(a=self._A,b=self._B,c=self._C)
# return Quadratic.__call__(y)
#
# else:
#
# y(a=self._A,b=self._B,c=self._C)
# return Quadratic.__call__(y)
#
#
#
#if __name__ == "__main__":
# cubic1 = Cubic(1,3,-7,-21)
# print(cubic1)
# print()
# cubic5 = Cubic(1,-3,-13,15)
# print(cubic5)
# print()
# cubic2 = Cubic(1,2,-7,-10)
# print(cubic2)
# print()
# cubic3 = Cubic(5,-1,-2,0)
# print(cubic3)
# print()
# cubic4 = Cubic(2,-6,-13,18)
# print(cubic4)
# print()
# cubic4 = Cubic(2,3,-4,-3)
# print(cubic4)
# print()
#
|