an example, strings A B C or D with probabilities .1 .2 .3 .4 --
abcd = dict( A=1, D=4, C=3, B=2 )
# keys can be any immutables: 2d points, colors, atoms ...
wrand = Walkerrandom( abcd.values(), abcd.keys() )
wrand.random() # each call -> "A" "B" "C" or "D"
# fast: 1 randint(), 1 uniform(), table lookup
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | #!/usr/bin/env python
""" Walker's alias method for random objects with different probablities
walkerrandom.py
Examples
--------
# 0 1 2 or 3 with probabilities .1 .2 .3 .4 --
wrand = Walkerrandom( [10, 20, 30 40] ) # builds the Walker tables
wrand.random() # each call -> 0 1 2 or 3
# for example, 1000 calls with random.seed(1) -> [96, 199, 334, 371]
# strings A B C or D with probabilities .1 .2 .3 .4 --
abcd = dict( A=1, D=4, C=3, B=2 )
# keys can be any immutables: 2d points, colors, atoms ...
wrand = Walkerrandom( abcd.values(), abcd.keys() )
wrand.random() # each call -> "A" "B" "C" or "D"
# fast: 1 randint(), 1 uniform(), table lookup
How it works
------------
For weights 10 20 30 40 as above, picture sticks A B C D of those lengths:
10 AAAAAAAAAA
20 BBBBBBBBBB BBBBBBBBBB
30 CCCCCCCCCC CCCCCCCCCC CCCCCCCCCC
40 DDDDDDDDDD DDDDDDDDDD DDDDDDDDDD DDDDDDDDDD
Split and rearrange them into equal-length rows, like this:
AAAAAAAAAA DDDDDDDDDDDDDDD -- 10 A + 15 D = 40% A + 60% D
BBBBBBBBBBBBBBBBBBBB DDDDD -- 20 B + 5 D = 80% B + 20% D
CCCCCCCCCCCCCCCCCCCCCCCCC -- 25 C = 100% C
DDDDDDDDDDDDDDDDDDDD CCCCC -- 20 D + 5 C = 80% D + 20% C
Clearly 10 % of the area is A, 20 % B, 30 % C and 40 % D --
we haven't changed areas, just rearranged.
Now to choose a random one of A or B or C or D,
throw a dart at a "dart board" of the sticks in these 4 rows:
if it hits row 0, return A with probablity 40 % / D 60 %
if it hits row 1, return B with probablity 80 % / D 20 %
...
This picture is in Devroye, p. 111 (rediscovered here).
Walker's algorithm essentially arranges a given lot of sticks
into equal-length rows: pick a row shorter than average
and a row longer than average, split the longer to fill the shorter,
iterate until they're all the same length.
Notes
To generate random colors similar to those in a given picture,
first collect color samples in a histogram:
for color in ...:
# cluster e.g. rrggbb -> rgb, 16^3 bins
# (many many methods, see Wikipedia Data_clustering)
colors[color] += 1
(cPickle to a file, write it, read it back in)
then use Walkerrandom to select colors with these frequencies:
colorrand = Walkerrandom( colors.values(), colors.keys() )
colorrand.random() # each call -> a color
References
L. Devroye, Non-Uniform Random Variate Generation, 1986, p. 107 ff.
http://cg.scs.carleton.ca/~luc/rnbookindex.html (800 pages)
Knuth, Stanford GraphBase, 1993, p. 392
C++ hat random container by AngleWyrm,
http://home.comcast.net/~anglewyrm/hat.html
"""
from __future__ import division
import random
__author__ = "Denis Bzowy"
__version__ = "16nov2008"
Test = 0
#...............................................................................
class Walkerrandom:
""" Walker's alias method for random objects with different probablities
"""
def __init__( self, weights, keys=None ):
""" builds the Walker tables prob and inx for calls to random().
The weights (a list or tuple or iterable) can be in any order;
they need not sum to 1.
"""
n = self.n = len(weights)
self.keys = keys
sumw = sum(weights)
prob = [w * n / sumw for w in weights] # av 1
inx = [-1] * n
short = [j for j, p in enumerate( prob ) if p < 1]
long = [j for j, p in enumerate( prob ) if p > 1]
while short and long:
j = short.pop()
k = long[-1]
# assert prob[j] <= 1 <= prob[k]
inx[j] = k
prob[k] -= (1 - prob[j]) # -= residual weight
if prob[k] < 1:
short.append( k )
long.pop()
if Test:
print "test Walkerrandom: j k pk: %d %d %.2g" % (j, k, prob[k])
self.prob = prob
self.inx = inx
if Test:
print "test", self
def __str__( self ):
""" e.g. "Walkerrandom prob: 0.4 0.8 1 0.8 inx: 3 3 -1 2" """
probstr = " ".join([ "%.2g" % x for x in self.prob ])
inxstr = " ".join([ "%.2g" % x for x in self.inx ])
return "Walkerrandom prob: %s inx: %s" % (probstr, inxstr)
#...............................................................................
def random( self ):
""" each call -> a random int or key with the given probability
fast: 1 randint(), 1 random.uniform(), table lookup
"""
u = random.uniform( 0, 1 )
j = random.randint( 0, self.n - 1 ) # or low bits of u
randint = j if u <= self.prob[j] \
else self.inx[j]
return self.keys[randint] if self.keys \
else randint
#...............................................................................
if __name__ == "__main__":
# little examples, self-contained --
N = 5
Nrand = 1000
randomseed = 1
try:
import bz.util
bz.util.scan_eq_args( globals(), __doc__ ) # N=5 ...
except ImportError:
pass
if randomseed:
random.seed( randomseed )
print Nrand, "Walkerrandom with weights .1 .2 .3 .4:"
w = range( 1, N )
wrand = Walkerrandom( w )
nrand = [0] * (N - 1)
for _ in range( Nrand ):
j = wrand.random()
nrand[j] += 1
s = str( nrand )
print s
if N==5 and Nrand==1000 and randomseed==1:
assert s == "[96, 199, 334, 371]"
print Nrand, "Walkerrandom strings with weights .1 .2 .3 .4:"
abcd = dict( A=1, D=4, C=3, B=2 )
wrand = Walkerrandom( abcd.values(), abcd.keys() )
from collections import defaultdict
nrand = defaultdict(int) # init 0
for _ in range( Nrand ):
j = wrand.random()
nrand[j] += 1
s = str( sorted( nrand.iteritems() ))
print s
if N==5 and Nrand==1000 and randomseed==1:
assert s == "[('A', 105), ('B', 181), ('C', 283), ('D', 431)]"
# end walkerrandom.py
|
Tags: random_number, walker_s_alias
Thanks for posting this, it was very helpful! I've ported this code to Ruby if anyone needs it: https://github.com/cantino/walker_method