Welcome, guest | Sign In | My Account | Store | Cart

an example, strings A B C or D with probabilities .1 .2 .3 .4 --

abcd = dict( A=1, D=4, C=3, B=2 )
  # keys can be any immutables: 2d points, colors, atoms ...
wrand = Walkerrandom( abcd.values(), abcd.keys() )
wrand.random()  # each call -> "A" "B" "C" or "D"
                # fast: 1 randint(), 1 uniform(), table lookup
Python, 173 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
""" Walker's alias method for random objects with different probablities
    walkerrandom.py

Examples
--------

    # 0 1 2 or 3 with probabilities .1 .2 .3 .4 --
  wrand = Walkerrandom( [10, 20, 30 40] )  # builds the Walker tables
  wrand.random()  # each call -> 0 1 2 or 3
    # for example, 1000 calls with random.seed(1) -> [96, 199, 334, 371]

    # strings A B C or D with probabilities .1 .2 .3 .4 --
  abcd = dict( A=1, D=4, C=3, B=2 )
    # keys can be any immutables: 2d points, colors, atoms ...
  wrand = Walkerrandom( abcd.values(), abcd.keys() )
  wrand.random()  # each call -> "A" "B" "C" or "D"
                  # fast: 1 randint(), 1 uniform(), table lookup

How it works
------------

For weights 10 20 30 40 as above, picture sticks A B C D of those lengths:

    10  AAAAAAAAAA
    20  BBBBBBBBBB BBBBBBBBBB
    30  CCCCCCCCCC CCCCCCCCCC CCCCCCCCCC
    40  DDDDDDDDDD DDDDDDDDDD DDDDDDDDDD DDDDDDDDDD

Split and rearrange them into equal-length rows, like this:

    AAAAAAAAAA DDDDDDDDDDDDDDD  -- 10 A + 15 D = 40% A + 60% D
    BBBBBBBBBBBBBBBBBBBB DDDDD  -- 20 B + 5 D  = 80% B + 20% D
    CCCCCCCCCCCCCCCCCCCCCCCCC   -- 25 C        = 100% C
    DDDDDDDDDDDDDDDDDDDD CCCCC  -- 20 D + 5 C  = 80% D + 20% C

Clearly 10 % of the area is A, 20 % B, 30 % C and 40 % D --
we haven't changed areas, just rearranged.
Now to choose a random one of A or B or C or D,
throw a dart at a "dart board" of the sticks in these 4 rows:
if it hits row 0, return A with probablity 40 % / D 60 %
if it hits row 1, return B with probablity 80 % / D 20 %
...
This picture is in Devroye, p. 111 (rediscovered here).

Walker's algorithm essentially arranges a given lot of sticks
into equal-length rows: pick a row shorter than average
and a row longer than average, split the longer to fill the shorter,
iterate until they're all the same length.


Notes

  To generate random colors similar to those in a given picture,
  first collect color samples in a histogram:
    for color in ...:
        # cluster e.g. rrggbb -> rgb, 16^3 bins
        # (many many methods, see Wikipedia Data_clustering)
        colors[color] += 1
    (cPickle to a file, write it, read it back in)
  then use Walkerrandom to select colors with these frequencies:
      colorrand = Walkerrandom( colors.values(), colors.keys() )
      colorrand.random()  # each call -> a color

References

    L. Devroye, Non-Uniform Random Variate Generation, 1986, p. 107 ff.
        http://cg.scs.carleton.ca/~luc/rnbookindex.html (800 pages)
    Knuth, Stanford GraphBase, 1993, p. 392
    C++ hat random container by AngleWyrm,
        http://home.comcast.net/~anglewyrm/hat.html

"""

from __future__ import division
import random

__author__ = "Denis Bzowy"
__version__ = "16nov2008"
Test = 0

#...............................................................................
class Walkerrandom:
  """ Walker's alias method for random objects with different probablities
  """

  def __init__( self, weights, keys=None ):
    """ builds the Walker tables prob and inx for calls to random().
        The weights (a list or tuple or iterable) can be in any order;
        they need not sum to 1.
    """
    n = self.n = len(weights)
    self.keys = keys
    sumw = sum(weights)
    prob = [w * n / sumw for w in weights]  # av 1
    inx = [-1] * n
    short = [j for j, p in enumerate( prob ) if p < 1]
    long = [j for j, p in enumerate( prob ) if p > 1]
    while short and long:
        j = short.pop()
        k = long[-1]
        # assert prob[j] <= 1 <= prob[k]
        inx[j] = k
        prob[k] -= (1 - prob[j])  # -= residual weight
        if prob[k] < 1:
            short.append( k )
            long.pop()
        if Test:
            print "test Walkerrandom: j k pk: %d %d %.2g" % (j, k, prob[k])
    self.prob = prob
    self.inx = inx
    if Test:
        print "test", self

  def __str__( self ):
    """ e.g. "Walkerrandom prob: 0.4 0.8 1 0.8  inx: 3 3 -1 2" """
    probstr = " ".join([ "%.2g" % x for x in self.prob ])
    inxstr = " ".join([ "%.2g" % x for x in self.inx ])
    return "Walkerrandom prob: %s  inx: %s" % (probstr, inxstr)

#...............................................................................
  def random( self ):
    """ each call -> a random int or key with the given probability
        fast: 1 randint(), 1 random.uniform(), table lookup
    """
    u = random.uniform( 0, 1 )
    j = random.randint( 0, self.n - 1 )  # or low bits of u
    randint = j if u <= self.prob[j] \
        else self.inx[j]
    return self.keys[randint] if self.keys \
        else randint


#...............................................................................
if __name__ == "__main__":
    # little examples, self-contained --
    N = 5
    Nrand = 1000
    randomseed = 1
    try:
        import bz.util
        bz.util.scan_eq_args( globals(), __doc__ )  # N=5 ...
    except ImportError:
        pass
    if randomseed:
        random.seed( randomseed )

    print Nrand, "Walkerrandom with weights .1 .2 .3 .4:"
    w = range( 1, N )
    wrand = Walkerrandom( w )
    nrand = [0] * (N - 1)
    for _ in range( Nrand ):
        j = wrand.random()
        nrand[j] += 1
    s = str( nrand )
    print s
    if N==5 and Nrand==1000 and randomseed==1:
        assert s == "[96, 199, 334, 371]"

    print Nrand, "Walkerrandom strings with weights .1 .2 .3 .4:"
    abcd = dict( A=1, D=4, C=3, B=2 )
    wrand = Walkerrandom( abcd.values(), abcd.keys() )
    from collections import defaultdict
    nrand = defaultdict(int)  # init 0
    for _ in range( Nrand ):
        j = wrand.random()
        nrand[j] += 1
    s = str( sorted( nrand.iteritems() ))
    print s
    if N==5 and Nrand==1000 and randomseed==1:
        assert s == "[('A', 105), ('B', 181), ('C', 283), ('D', 431)]"

# end walkerrandom.py

1 comment

Andrew C 11 years, 1 month ago  # | flag

Thanks for posting this, it was very helpful! I've ported this code to Ruby if anyone needs it: https://github.com/cantino/walker_method